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Abstract

Human society has long tried to control its environment, #nd has also
been one of the more prominent tasks of, and applicationsafaficial intelli-
gence (Al) systems. With the rise of the concept ohgentwithin Al, it became
of even greater importance to endow these agents with thebday to control
their environments. Given real-world limitations on ageritowever, it became
crucial to develop control mechanisms that go beyond starantrol theory, in-
corporating bounded reasoning into these Al systems, resiog and utilising
the agent’s limitations regarding computational efford @omplexity.

This thesis introduces Dynamics Based Control (DBC)—a novehéraork
for continual planning and control in stochastic environise While it can be
related to the principles of model-following and percepentrol (and in fact
uses these principles as a part of its philosophical im)tiDBC directly targets
system dynamics, rather than the system state. DBC viewgitis®s/ subsystem
of an agent as a continual environment dynamics estimatohidentification
algorithm, and concentrates on the sensory subsystem emnitiol subject. As
the sensory system limits the agent’s ability to deciphentiorld, it makes little
sense to attempt to invest more effort into controlling aerdg surroundings than
can actually be detected. Thus the Dynamics Based Control (DBa@jefwvork,
following the perceptual control principle, has us designagent’'s behaviour
not to explicitly enforce preferred environment circunmetas, but rather to create
conditions within the environment that would be recognisgthe sensory system

as the complete preferred circumstances. This would resatimpletion of the



control task to the extent that can be detected, while eciogon the effort to
create refinements to the control task, which would not beatietl even if they
do take place.

Being a general and flexible framework, DBC can potentiallyehanany al-
gorithmic solutions and instantiations within differeppés of environments. The
thesis concentrates on the DBC adaptation to Markovian astichenvironments,
and formulates a specific system dynamics estimation aftgorfor such envi-
ronments — Extended Markov Tracking (EMT). EMT bases itsneste on two
system state distribution vectors, which represent asiagvironment modifica-
tion, and a previous system dynamics estimate. EMT thuspasfa conservative
update, producing a new dynamics estimate that explaing etveachange in the
system state distribution, while remaining as close asiplest® the previous es-
timate.

Based on the EMT estimator, and utilising its polynomial tipggformance,
an approximate greedy algorithmic solution to the DBC cdrttisk is then de-
veloped and experimentally shown to be operational. EMSeldaontrol utilises
EMT to predict the effects of an action, and greedily selaatsction that would
bring the EMT estimate closest to the specified ideal systeweldpment. The
resulting overall control scheme, in spite of being only ppraximation, imple-
ments all basic elements and properties of the DBC framework.

During its operation, EMT-based control does not provideEMT algorithm
with the true system state transition data. Instead, the BMdrithm is provided
with the sequence of system state beliefs. This means theivARbased con-
troller not only relies on EMT to identify the system dynasjibut also regards it

as a filter, discarding noise from the dynamic system reptatien. This filtering



capability has been experimentally verified by a constanctf an environment
model calibration algorithm based on the EMT data.

The dynamics estimate of the environment, provided by EMIE &lso en-
abled the construction of multi-agent and multi-targesiars of the EMT-based
controller. In the multiagent case, it is conjectured angbieically verified that
in certain domains an implicit information transfer betweke agents is formed,
enabling efficient coordinated performance without expiommunication. In
the multi-target version, EMT data forms a preference veetwabling the merger
of potentially conflicting behavioural requirements.

Besides being a greedy approximation, several additiomatdtions of the
EMT-based control scheme, which stem from the EMT dynanstsnator itself,
have been identified by this research. This has led to theuiatron of additional
directions of research, applying the DBC framework to otteirenment models
and domains, including Predictive State Representatiothsepeated games with

dynamically developing opponents.
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Chapter 1

Introduction

“If you want to make God laugh, tell him about your plans.”

Woody Allen

Ever since the dawn of humanity, people have tried to conlr@r environ-
ment. The desire to see the world change for our benefit hdegdusrward the
technology of control and planning, from making a fire andplto cooperatively
hunt, to the flight-control computers of a modern aircratinf narrative hunt sto-
ries to a variety of formal methods and mathematical modeshould then come
as no surprise that among the very first questions posed fdichd Intelligence
systems was how to make computers plan automatically.

In the most classical Al view, the world is seen as one of agirgsoup of
states, and an intelligent entity can deterministicalliwenthe world from one
state to another. One instantiation of this model came tonogvk as State Ori-
ented Domains (SODs) [83] and is governed by the Closed Wosklption
(CWA) [87]. Under these conditions, planning and controleveeen as a search

for a sequence of actions that change the world to fit somereanis on the state.

1



CHAPTER 1. INTRODUCTION 2

Approaches like STRIPS [29] flourished.

However, researchers quickly realised that the CWA has edimaitations.
Unexpected failures and uncertain environment responaasesl the improve-
ment of planning and control methodologies. Contingencistast planning ap-
peared, giving rise t@onditional plans[68, 23, 14], and planner systems like
Weaver and PRODIGY [13, 100]. Yet, these plans suffer froaiaaility prob-
lems: tracing all possible exogenous events and theirtsfteands to increment
plan size exponentially, sometimes making the entire ésernfeasible.

Refinement of plans and use of a plan hierarchy [30, 15, 62]rbed¢he next
step in attempting to solve the scalability challenge. ThHisnately resulted in a
form of planning callec¢ontinual plannind24], where a plan is generally updated
and corrected over time, rather than just refined with detdilnfortunately, too
many approaches to continual planning have usedpalate upon failurgolicy,
which results once again in increased complexity and cioste she plan has to be
rebuilt. Though minimisation of plan changes is possiblg ghd the re-planning
approach has been applied in some complex domains [60]emieg treatment
may be more beneficial over time despite the cost enduredchat #ap. The
update upon failurgolicy also lacks pro-activeness, an essential elemenhat w
we now consider an intelligent agent [109].

Another widespread framework for planning is that of dexigheory [13, 14,
16]. Decision theory has introduced the notiorutfity, or preferenceinto plan-
ning considerations [87]. Further interconnecting withckiastic game theory, it
developed into one of the most used models for decision rgaknder uncer-
tainty: Markov Decision Processes (MDPs). MDPs [72] areabi#égoof modelling

uncertainty in action outcomes, as well as an elaborateerahgtility gains over
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time. An MDP model assigns utilities (reward/cost) to sgst&tate transitions,
and reasons about average, accumulated, and accumulstedmtied utility over
finite or infinite time lines. The Bellman-Ford equation pes a state oriented
description, and dynamic programming techniques provigenteans [6, 9] to
find an optimal action for every system state, thus forminglay of action, or a
plan.

MDP models have been also extended to include partial obisdity of the
system state, or sensory aliasing, into so-called Partiiservable MDPs
(POMDPSs) [49, 20]. Armed with this new modelling abilityettfMDP approach
found many applications, including in robotics [42, 20, 88, 92, 36]. Unfortu-
nately, the wide range of solution techniques [58, 49], togewith the focus on
the value of a system state, inherited and multiplied theprdgational complexity
of finding a solution, reaching even the condition of undabitity [16, 53, 52].

MDP-type modelling, however, gives us significant poweraptaring a very
wide variety of domains, and its analytical power maintatssappeal. Some
complexity studies have suggested (e.qg., [74, 73]) thatthié optimality criteria,
with its momentary state focus and averaging, that are artienigey ingredients
to the computational complexity of the MDP approach.

It is interesting to see how the modern (PO)V\J%DE’chnology begins to turn
towards continuous spaces of system states and actiong]laswhe continuous
time-line. It is hoped that analytical tools will assist (RIDPs to become more
applicable to complex problem domains. This is, howevemesshat peculiar,

for such a move makes (PO)MDPs resemble more than ever tb&adacontrol

IPartially Observable Markov Decision Problems (POMDPs)eavariant on MDPs, discussed

further later in the dissertation.
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theory.

Classical control theory [95, 21] has strong mathematicahections with
physics, and usually describes and operates with contgsiggtems. A system’s
state is usually a vector that contains a sufficient set dcdrpaters to describe a
momentary snapshot of the system, while the system itssies as a function
that describes the transformation of this vector over tigiter by determining
the state derivative for continuous time systems, or dietgtermining the state
at the next time step for discrete time systems. The systata sansformation
function, termedystem dynamig¢san be analysed to discover a system’s inherent
stability and dynamic properties. Control theory’s mathecahapparatus allows
it to treat uncertainty in the system state by substitutirdjséribution over the
system state into the system dynamics function, insteadsoigle system state
vector.

As aresult it becomes possible to describe a fairly compgibygical) environ-
ment by a rigorous mathematical formulation. But to descalo®ntrol problem
within that environment, the system description is exteuaethe notion of utility
and its expected accumulative over time, making the siityléo the (PO)MDP
approach evident and obvious. Even the notiorcadt to gothat characterises
dynamic programming solutions is relevant both to (PO)M@RM to classical
control theory.

Although the analytical properties of the system desaipéllow control the-
ory to create strong tools to deal with system state unceytée.qg., filters such as
the Kalman filter and unscented transforms [111, 101, 39atcng an optimal
control signal for the expected accumulated utility is catagionally hard, and a

variety of assumptions and simplifications (e.qg., lingasitthe system dynamics,
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a quadratic cost function) are made to make the procesdfeasi

It appears that among all the theories of planning and cbatkey ingredient
disappeared along the way from a narrative hunt story todimadl plan and con-
trol methodologies. It is the perspective of this thesid tha missing ingredient
is the focus on system or environment development dynaniesn in classical
control theory, where the notion glystem dynamics utilised, it is the system
state (directly, or by the formulation of a utility functipthat concerns the main
body of approaches to control, starting from PIDs and endiiig model follow-
ing. Yet, capturing and operating directly in terms of sgstéynamics is crucial.
This can be made evident by a simple example from the humamwsgstem.

Consider a peculiar pattern on a dalmatian. Black, misshgpadises on an
otherwise white coat are the trademark of this breed of dagh% dog would
usually stand out in our normal domestic environment. Buiagsfor a moment
that the dog sits in front of a screen bearing just the same &frblack splash
patterr@ Motionless, the dog blends into its background and virjuaibappears.
However, once it starts to move we immediately spot it agaihe variation,
the change, the motion of black splashes we see is the very that identifies
to us the presence of an entity and, most importantly, iflestthe entity as a
dalmatian. This nifty trick can be performed by the humamovisystem because
it concentrates not on a momentary snapshot of the envirofyioet on the rules
that guide and describe tldevelopmendf the environment.

Our knowledge of how human vision analyses dynamic enviemimallows

us to create a great variety of visual effects applied anisedti by Computer

2This is, in fact, a simulation of how the dog would look throudpe colour-blind vision of

other animals (see Figure 1.1).
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Figure 1.1: Running Dalmatian (photograph by R.C. James)

Graphics and the movie industry. Following the human abibtrecognise mov-
ing splashes of colour as a dog, it is possible to create anessn of a dog
just by moving the spots, without the actual dog being pres&imilarly, the mo-
tion of certain forms of image components can create anaoltusf a 3D object
appearing on a 2D screen, and this fact is extensively us@&D@nimators.

This thesis adopts the intuition of the human visual systeahility to concen-
trate on system development dynamics, resulting in a nowtledfective frame-

work for continual planning and control: tiyynamics Based Contrélamework.



Chapter 2

Background and Related Work

“The only thing more reliable than magik is one’s friends!”
Macbeth
“There’s something to be said for relatives ...it has to be said becauseptstable!”

A. Einstein

(from R. Asprin epigraphs)

TheDynamics Based Control (DB@amework and algorithms, which are the
contribution of this thesis, have been created to addressaeshortcomings of
available control and planning technologies in stochadfitamic systems. We
therefore overview the technological background of thiklfie order to under-
stand the context and contributions of the DBC framework.

DBC is indeed a control framework, and as such uses a simileabtdary
to that of classical control theory. Terms suchsgstem identificatiomnd sys-
tem dynamicsire used in the control theory sense. However, the DBC afgosit
developed operate in a specific environment type—a dis(tiete, state and ac-

tion space) Markovian environment, which makes it more earent to borrow

7
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some terms from another control and planning framework-tidgrObservable
Markov Decision Problems (POMDPs). Terms sucltrassition functionand
system state distributiorthough they retain their control theory meaning, were
utilised by the Extended Markov Tracking (EMT) based impdertation of DBC

in their POMDP sense.

Both the general DBC framework and its EMT-based implemesatontain
an estimation algorithm component. This component in sagneessummarises
the environment’s response to the control sequence applieimakes such ap-
proaches asnodel predictive controhndfictitious playrelevant background as
well.

In the sections that follow, the aforementioned approath@scontrolled in-
teraction with an environment are briefly summarised. Thaplete volume of
the background is so extensive that an exhaustive summaryually impossible.
Therefore, we present only those elements which are deemeessist the reader
in understanding this thesis’ contribution, the Dynamicsd&hControl frame-
work. During this exposition, we will occasionally inteesge comparisons of the

approaches being presented with the DBC approach.

2.1 Control Theory

Classical control theory [95, 21] has its mathematical agjparrooted in physics.
The first mathematically described dynamic systems did ae¢ lan external con-
trol input, and developed over time at their own accord. Saudlonomicsystems

described the behaviour of a system according to the lawshgsips: e.g., a

bouncing ball, motion of a pendulum. Quickly it became app#that, as long as
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we can imagine that a mathematical law stands behind théagewent of a sys-
tem, similar mathematical equations can describe the lhalmagf non-physics
related systems as well, e.g., the hunter-prey balance.

It became possible to analyse a system’s behaviour, faritsbenefits. For
some of the systems their behaviour did not only depend anphacipal com-
position, but also on the specific parameters of the prih@peaponents. The
simplest example would be perhaps the behaviour of a pemdwliose oscilla-
tion period depends (only) on its length. As many childrerckjy discover on a
swing, for a swing is a pendulum, this parameter dependem&esit possible to
vary the behaviour of the system—that is, to control it.

Control theory defines a system’s state as a vector € R™ where each co-
ordinate describes a single parameter of the system. Awgater is designed to
containsufficientdata to describe a momentary snapshot of the system attime
The system is then described by an equation of the foemf[x, u, t], wheref is
the system dynamidsinction andu € R™ is the set of controlled parameters of
the system. Since is a function of time, itis also referred to asantrol signalor
control input Once the control signal is fixed, so is the behaviour of thetesy:
the system takes the autonomic fokm- f %, t], with its (autonomic) system dy-
namicsf. Mathematical analysis of the system dynamics functiondztermine
to what degree the system is controllable, that is, what kihdehaviours it is
possible to create.

A formal system description, however, does not pose a coptoblem by
itself. One needs to determine what behaviours, and to wégitee those be-
haviours, are considered beneficial. To this end classaatal theory makes a

crucial decision—it is the properties of the control sigaatl system state over
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time that determine the benefit of any given behaviour. lreothords, autility

(or cos) functionis defined of the form:
ty

7= olx(t).t) + [ £x(0).u(), i
to
The control problem is then to find(t)\:f:t0 so as to minimise the cost The
solution to this problem is found by an application of thecodds of variations,
and the principle is readily demonstrated by the Brachistmad problem.

|

Figure 2.1: Brachistochrone problem: make the bead slidedowhe least time

possible.

The Brachistochrone problem can be formulated as followsd tive curve
down which a bead sliding without friction, starting fronraspeed, and effected
by gravity alone, will slip in the least time possible (Figi2.1). The problem
can be viewed as a standard control problem if one takes #wdspf the bead
as constituting the system state, the curve function to bectimtrol input, and
the cost function computing the time needed for the beadatgetse the curve.

Johann Bernoulli solved the problem, and then publishedatdmllenge to others
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through Acta Eruditorum in June 1696. The challenge wasede and four
other solutions were sent in by Isaac Newton, Jakob Bernédiitfried Leibniz,
and Guillaume de I'iBpital.

The elegance of the continuous time solution nowadays gwassto the dis-
crete time system formulation, mostly due to digital impétations. It some-
what changes the mathematics, but the structure remairsathe: a system is
described by an equation of the forn ; = f(x,,u,,n), wheren is the time
step of the system.

Both the continuous and the discrete time system formulat@ve been ex-
tended to include random perturbations. This is done bwydhicing a stochastic
processw(n), that encodes perturbations, into the system dynamicgifumand

the expected cost function (here given in a discrete timm Yor

J=F (¢[x(nf),w(nf),nf] + Z [,[Xn,un,wn,n])

n=ng

It is assumed that the random perturbatwias some convenient properties:
e w is relatively small and additivex = f[x, u, ¢] + L(¢)w(t)
e w is a white-noise process:
— Elw(t)]=w=0
— Elw(t)w(t)T] = W(t)d(t — 7), whered is that of Kroeneger.
Introducing stochasticity requires the notion of the systtate to be aug-
mented. It can no longer be a deterministic (function) vectoestead, it too
becomes a random variable, and the system dynamics funcéioeforms the

state’s distribution through time, governing the dynanaitthe overall stochastic

process.
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But control theory does not stop at this, and continues to tioatp the theo-
retical setup further by introducing the notion of obseiliof the system state.
This is modelled by introducing an observation vegtar R*, observation noise
processv, and the observation function, so that an observation & #ims given
by an equation of the form,, = h[x,,, u,, v, n]. Given that only partial knowl-
edge about the system state is available, computing a ¢@mral optimal with
respect to the defined cost function becomes even more cengieng rise to
the concept ofilters—mathematical and algorithmic constructs that allow effi-
cient recovery of the system state distribution based ombiservation data and
the system dynamics moddlandh (see e.g., [111, 101, 39]).

Scarcity of proper information about the system state aegystem’s stochas-
tic nature make control feedback a necessity; that is, thealsignal is not pre-
computed in advance, but rather continually corrected astlaped in @losed
loop with its application, based on the most recent system measnts and es-
timations. In the scope of this thesis, the most interestargion of this closed
loop is themodel-followingcontrol approach. Under the model following an ideal
system dynamic<* is assumed to exist, and the system is controlled as a func-
tion of the error between the state space trajectory pratbgehe ideal and the
factual system responses.

The model-following approach is considered among the maloest and ef-
fective control methods, but interestingly it also unde$ the main shortcom-
ing of classical control theory. At the origin of control trg, a utility function
was used to differentiate beneficial system behaviour, ibthe case of model-
following the roles have been reversed—despite the fadt ttiea optimal be-

haviour is defined, it is converted into a space state trajg¢o fit a utility-based
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solution concept.

Before we continue, it is important to underline this obstora Recalling the
control of a pendulum or a swing—varying the length of thechdnm changes
the dynamicsof the system, rather than the system'’s state. The systetinges
to develop over time, but the laws of this development chariés is what makes
swings fun for kids; they recreate a certdynamidbehaviour, and consider reach-
ing thatdynamicgo be the optimality criteria. The same point of view is adapt
by the Dynamics Based Control framework, introduced in thesith—it focuses
on the systendynamics and chooses a control signal guided by proximity to an

idealdynamics

2.2 Partially Observable Markov Decision Problems

(POMDPS)

Markov Decision Processes and their partially observabligation have been
introduced to model a completely discrete controlled syswth an intrinsic
stochastic property and limited memory. The model esdgnsiees the environ-
ment as a family of stationary stochastic processes wittsitian probabilities
parameterised by some action space, where the processdsplever a discrete
time-line. Formally, a Markovian Decision Process (or a kbatan environment)

is defined by a tuplec S, A, T, sq >, where:
e S represents the set of all possible system (environmerigssta

e 5o € II(S) determines the distribution from which the initial systetats

(at time zero) is sampled.
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e A represents the set of all possible actions applicable mithe environ-
ment. At times a division of the set is defined:A, for all s € S, since not

all actions are applicable in all possible system states.

o T:S5 x A — II(9) is the transition function that describes the probability
distribution over the system states at the next time stepngilie current

time step’s system state, and the action applied.

In turn, Markov Decision Problems (MDPs) extend this enwmental de-
scription by a utility (reward or cost) functiol? : S x A x S — R, and an
optimality criterig. The utility function is designed to describe preferencesr o
different controlled transitions of the environment fromecstate to another. The
optimality criteria states how this utility has to be trehteer time. A solution to
a Markov Decision Problem (MDP) is then a policy of actioresibn based on
the environment’s observations that produces the bedtyutilth respect to the
defined optimality criteria.

By far the most popular optimality criteria are the followitvgo:

e Expected discounted reward accumulation over the infimte thorizon
Let » be a random variable denoting the utility obtained at timender
action selection policyt, and let0 < v < 1. Then the optimal policy under

the criteria is

1=0

7" = argmax E <Z 7%’?)

e Expected un-discounted reward accumulation over a finite tiorizon

Let 7 be a random variable denoting the utility obtained at timender

'Note how this echoes classical control theory.
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action selection policyr, and let7” > 0 be some finite time step at which
the system is stopped. Then the optimal policy under theraits
T
7 = arg max E <Z rf)
=0
It has been shown that under the discounted reward criteziaptimal policy
has the form of a mapping from system states to actions.S — A, that is in
every system state there is a single optimal action. Furtber the policy can be
recovered from the Bellman-Ford equation for the optimal&dunction.
V*(s) = maxz (R(s,a,s) +~yV*(s) T(s]s,a).

s'eS

The value function/™ : S — R expresses the expected reward that can be
obtained by applying a policy starting from any given systtate. The expected
reward obtained by the policy is then the expectation of @laesfunction with
respect to the initial state distributiag: > so(s)V™(s), and the value function in
turn is maximised at all points by the osptimal policy.

The duality between the value function and the applied pdliwe rise to
MDP solution algorithms, such glicy andvalue iteration The value iteration
algorithm is adynamic programming@, 6] solution of the problem that uses the

Bellman-Ford equation to backup the value:

e Initialise °(s) to small random values.

e lterateV*™(s) = max > (R(s,a,s') +yV*(s')) T(s']s, a) until conver-
@ ses
gence.

e Compute the policy by

*(s) = arg mgxz (R(s,a,s') +~yV*(s')T(s]s,a)

s'eS



CHAPTER 2. BACKGROUND AND RELATED WORK 16

Policy iteration attempt to correct the policy directly thg its iterations:
e Initialise policy to some random action selectich
e lIterate until convergence:

— Compute the value function that corresponds to the pafitypy solv-
ing the set of equations:
VE(s) =Y (R(s,7"(s),8') +7V(s))
— Compute new policy
7t = arg max Z (R(s,a,8') +V*(s) T(|s, a)
s'eS
This however assumes that the policy is computed under tworraasump-
tions: first, the world’s model is known, and second, thegyois computed off-
line, away from its application. To amend these two limdas, “hands-on” learn-
ing methods were introduced, such as SARSA, TD-, and Q-legui®7, 103].
Learning algorithms move through the space of possiblecigsliguided by re-
peated interactions with an environment, assuming onlyttfeenvironment is
indeed Markovian with known state and action spaces, butowitany knowl-
edge about the relationship of these two spaces. By their WHyirnking, most
of these algorithms are close to the policy iteration athoni as the on-line ex-
perience can be seen as an empirical value function conutéollowed by a
correction of the policy.
Reinforcement learning algorithms, other than expandirgrénge of do-
mains indirectly captured by MDPs, also expose a cruciakwess of the MDP

approach:indirect encoding of the behavioural preference by a reward function



CHAPTER 2. BACKGROUND AND RELATED WORK 17

To force a reinforcement learning algorithm produce a sydbehaviour which
is considered proper, the reward function used by the dlgorhas to carefully
designed (see e.g., [55, 65, 54]). Although Dynamics BasedrGlppresented
in this thesis, does assume the existence of an approximeai@®ement model,
it works with system dynamics directly, circumventing theanvenience of sec-
ondary preference encoding through a reward function.

Addressing the question of partial knowledge of the envitent, MDP tech-
nology turned to domains where the system state is not cdehplenown at all
times, since it is obscured and indirectly measured. Thistdeformulation of
Partially Observable MDPs (or POMDPSs for short).

A POMDP environment is defined by an extended tupl&, A, T, sq, O, Q2 >,
whereS, A, T ands, are as defined for an MDP, and the other two parameters are

as follows:

e O isthe set of all possible observations (or state measurevagres);

e ) : SxAxS — II(O) is the stochastic observability function, with
Q(o|s, a, s") determining the probability of an observation given tha th

system state underwent a certain controlled transformatio

POMDPs have received even greater attention for their ciyaio model
more realistic domains that include sensory aliasing,uhiclg robotic applica-
tions (e.g., [86, 43]). Although it is possible to convert@¥DP into the MDP
form, resulting in a so calletlelief MDP, the transformation explodes the state
space to unmanageable proportions. Coupled with the facthbaptimal pol-
icy is no longer a simple mapping from states to actions (@savably was in

the completely observable case), it led to a series of appaiion attempts and
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theoretical research into the computational complexityhefPartially Observable
problem.

Ranging from heuristic to more rigorous analytical apprescihe vast mul-
titude [99, 58, 40, 26, 69, 28, 94, 1] of approximate solwitmPOMDPs allows
one to handle larger and larger domains with greater effigierBut the stern
answer of the equal multitude [50, 57, 12, 51, 34, 18, 67, 23,53] of com-
putational complexity analysis remains unforgiving: maypyes of POMDPs are
unsolvable or computationally hard and inapproximable.

Among the reasons for this austere complexity one can naeexjfectation
(or other averaging) of the reward found in the formulatiéthe optimality cri-
teria for (PO)MDPs. The Dynamics Based Control (DBC) framewerkaves
this limitation by dealing directly with system behavioustrdibutions, rather than
a single parameter of arduous computational effort. A sintilend, though pre-
ceded by DBC and rather less general than DBC, can be also fotmd @imore

classical view of MDPs, as the following section demonsgat

2.3 Targeted Trajectory Distribution Markov Deci-

sion Processes (TTD-MDPs)

In [82] an alternative view of the target of the control prdeee within MDP envi-
ronments was introduced. Motivated by the need to establisin-static response
from an interactive game [5, 104, 64], authors have lookeBlEdPs to capture
the necessary uncertainty both in user (gamer) actions lendl@sired system

response. The resulting model was termed the TargetedclogjeDistribution
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Markov Decision Processes (TTD-MDP) and encompasses the foe a con-
troller to create a distribution over the system trajee®rirather than maximise
the expected utility, to create an effect of a surprise saeglin the interactive
entertainment.

Formally a TTD-MDP is defined over a given MDProcess, A, T', s, > by
atuple< 7, A, P, P(T) >, where:

e 7 is a set of trajectories of the underlying MDProcess,
e A s the set of actions inherited from the underlying MDPrages

e P: T x A — TI(7) is the stochastic transition function between dif-
ferent trajectories, given that a certain action has beleentaP (7|7, a)
determines the probability that the trajectary will be a successor of the

trajectory7 after the actiom € A has been taken.
e P(T) denotes the desired distribution over the space of trajesto

It is readily observed that the state space forms a tree,emmrh node is a
partial system trajectory, and edges are marked by a paim atton and a one-
state extension to the trajectory. This structure allovesdfiicient computation
and representation of the TTD-MDP transition functiongsionly for one pair of
trajectoriest, t’ € 7 the value ofP(t'|a, t) is non-zero. In fact, given thate 7
ends with states € S of the underlying MDP, only fot’ = tas’ with s € S
the transition probability?(t'|a, t) = T'(s'|a, s) and can be non-zero. This means
that the policy of the formr : 7 — TI(A), wherern(a|t) defines the probability
of taking actiornu € A given that trajectory € 7 has been traversed, completely

determines the policy dependent distributié¥i, over the space of trajectoriés
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In [10, 82] several algorithms were provided to solve thebfgm of finding
a policy that will produce a distribution over the trajedtsras close as possible
to the desired distributio®?(7). Each algorithm measured the distance between
the policy induced distributio??™ (7") and the ideal distributio®(7") differently,
ranging from thd; vector norm to Kullback-Leibler distances.

Although TTD-MDP provides an answer to some of the immedieteds of
gaming to create a controlled form of surprise [19], its cosifion has encoun-
tered another difficulty inherent in the standard treatnoé(PO)MDPs—because
the approach attempts to create a distribution over (peitegectories of the sys-
tem, the policy spans trempletdree of all possible system developments, which
is exponential in the size of the state-action space of tlieiying MDP. As a
result it is computationally hard to procure a good TTD-MDd#tqy. This could
be amended if the trajectory tree could be encoded sucgioctihe policy recre-
ated on-line in a continual planning manner [24]. Both of thamendments are
covered by the Dynamics Based Control (DBC) approach presamtassithesis.

However, DBC is not a mere extension of the TTD-MDP idea (wlitigre-
cedes). The TTD-MDP approach differs conceptually on sdvideper aspects
from DBC and from the Extended Markov Tracking (EMT) instatiobn of the
DBC framework. First of all, DBC assumes no specific type of nilodgof the
environment, e.g., it would equally encompass a system headay a Markovian
process and by a Predictive State Representation (PSR) [831Q6, 105, 107].
Furthermore, EMT, although it assumes a Markovian envimnmodel, is for-
mulated over a domain with partial observability, rathertla complete one, as is
the case with TTD-MDP. Finally, and perhaps most importatilie DBC frame-

work takes a crucial step towards encoding tle¥elopmenof the distribution
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over the system state, and operates in terms of the systeamily;mm Thus DBC
explicitly represents theourceof a distribution over different system trajecto-
ries. As aresult, the task representation becomes a vesgtilerone, capable of

capturing not only static system structures, but dynamesas well.

2.4 Fictitious Play

The Fictitious Play game theory concept was introduced byBrd 7] to denote
an interleaved process of learning and estimation in anradsial game. The
original idea behind it was that a player would imagine a gam®lling against
a set of potential adversaries, and construct his strateggcéordance with this
fictitiousplay. However, the implementation this idea received redube imag-
ination to one step only: a player selects a best-respornigmdo a set of adver-
saries whose strategies were previously estimated, tlenastthen applied, and
the estimates of the adversary policies are updated basseinsory information
(e.g., the actions taken by other players).

Although Fictitious Play has been interpreted within therework of classi-
cal game theory, and projected into game theory ontologystatndtural elements,
the concept itself is really much more general. Classictilg, projection would
mean that the interaction between the players would be ithescby a multi-
dimensional utility functionu : ﬁ A; — R"™, mapping actions independently
selected by the players into a \Z/::tor of rewards. That igmgthat each player

selected his action; € A;, then the utility would be

(U1, ...y upn) = u=u(ag,...,a,) € R",
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and player; would receive utilityu;. This also assumes that there is no guarantee
of this interaction to repeat. A player can of course tossia ootwo, that is,
draw his actions from some distribution over his action space I1(A4;); in that
case, it is common to compute thepected ultili

(E(w), ... E(uy)) = E(u) = Y u(@)p;(a;).

acllA;

In this setting, the best response means finding a distoibbtitiat would maximise
the player’s expected utility, and also reduces the FaztgiPlay concept to the
estimation of the distribution over the actions used by ophayers.

This game theoretic approach suffers from the same weaksddarkov De-
cision Problems—computing the average is hard, and ingteddaling with the
action distributions of other agents directly, they areusd to a single number,
an agent'expected utilityto characterise the environmental setting it faces.

It is interesting to notice, however, that the FictitiousyPtoncepitself pre-
scribes no specific way to estimate the strategy of the otlagers, but only as-
sumes that a player has a mechanism to do so. Fictitious Paystates no
specific representation of the other players strategy, @t wiat strategy might
represent by itself. It even does not prescribe how to measenefit of a re-
sponse to obtain the best one.

This means that one could define ‘best response’ differeatig still remain
within the framework of the Fictitious Play concept. For exde, it is possible
to define ‘best response’ with respect to thstribution of the player’s utility, as

opposed to thexpectatione.g., by preferring distributions which are proportional

°Notice, once again, how averaging plays the role of a fakbaherever distributions are

considered—the same happened with Markov Decision Problems
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toe*, whereu; is a utility value. If one relaxes the assumption of the nepeated
game, one can even estimate and use a stronger conceptyenehange of the
utility distribution over time. That is, actions are chosarthat the distribution of
utility will vary in time in a certain way—e.g., converging be proportional to
e,

A structurally similar process lies at the base of DynamicsdglaControl:
an estimator is determined to capture the system dynamidsthen a Fictitious
Play type of computation is used to predict the responseso$yktem to different
actions, ultimately resulting in the action which is deertwte best with respect
to correcting the system dynamics estimate.

However, the Fictitious Play concept had left its Game Thewadle long
before Dynamics Based Control, and established itself inrdiblels. Since Fic-

titious Play is a concept of learning and adaptation, it rediyifound its way into

the field of multi-agent learning, discussed in the nextieact

2.5 Multi-agent learning

Partial observability and decentralised, thus differipgyceptions of the environ-
ment make it hard for a team of agents to learn to behave beaidgfio an unfa-
miliar environment. Even though all the team members wishelp each other,
differences in their observations lead to dangerous nggHalent, and a friend
becomes a foe. In this context, fictitious play estimatesesponse of other team
members and aligns the agent’s actions with the rest of ta.te

Although this can be made easier by information exchange €sg. [98]),

in some cases the other team players are not even fully avdbhe oest of the
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team. For example, Sen et al. [89] show that mutually comeleary strategies
can be learned by two agents so as to perform a block pustskgteer a given
trajectorywithout sharing information, and, in fact, without mutual awarenes
This is because the variation of the system developmentrdigsaintroduced by
each agent could be overcome by the sensitivity (or acttiaiylearning rate) of
the other agent’s learning procedure.

It is, however, the Game Theoretic framework, rather thageneral Fic-
titious Play concept, which is of more frequent use in thetragent learning,
largely due to Littman’s contribution in [47]. In this papdre takes the stan-
dard game theoretic point of view, but extends it by allowihg game to have
an internal state which changes according to the actioroveocmposed and ap-
plied by participating agent players. The resulting frarmetakes the form of an
MDProblem with the utility and transition functions beingrameterised by two
action parameters, one for each agent within the modelddmysFurthermore
the utility function is assumed to represerzexo-sum game-that is, one agent
treats the function as representing reward, and wishes xinmge it, while the
other sees it as cost, and seeks to minimise it. Under thesengsions, Littman
formulates a combined version of the Q-learning algoriti®3] 102] and the
MiniMax principle [66], resulting in a MiniMax-Q algorithgin which both play-
ers dynamically change their response to one another,itggitme best response,
and in some cases converging to an equilibrium, at whichtpwrmagent has an
incentive to change its policy any more (a so-caldash Equilibriun). Later,
Hu and Wellman [37, 38] extended Littman’s approach to detd general sum
games, where the utility function is unconstrained in itelipretation by the play-

ers. The algorithm was also formally pro general sum gammebsywas named the
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Nash Q-Learninglgorithm.

It is important to notice that the concept of Nash equilibripresumes so
much mistrust and enmity between participating agentsdhah selects its ac-
tions independently from others. In the general case, waetien selection is
probabilistic, it means that distributions over agent8ats spaces are indepen-
dent. This, however, need not be the case.

In his book “The Evolution of Cooperation” [3], Axelrod amonther exam-
ples describes a peculiar behaviour in the trenches of thieVliorld War. The
opposing sides being roughly of equal power adopted a stharsynchronised
behaviour. As if following a conductor’s baton, solders attbsides barricaded
themselves in bunkers, while the artillery shelled the oside relentlessly. .. and
then again, following that invisible magical wand, evergp@merged from their
cover to set up dinner plates and tea, completely securéhather side does the
same. Though surreal, this shows that even in most brutadmokg, the action of
players may beorrelated That is, action selection distributions of participating
players arelependentand the overall distribution over the joint action space my
not be decomposable. Furthermore, it is possible that theddstribution can be
such that deviating from it will lead to utility reduction tbe deviating player—
if this situation occurs then the joint action selectiortrilsition is acorrelated
equilibriumof the game.

Correlated equilibriumnaturally extends and subsumes the notion of Nash
equilibrium, and multi-agent learning algorithms haverbdeveloped that con-
verge to such equilibria. Littman [48] has noticed that tesuanption about the
opponent in the game being friend or a foe is important botltémvergence of

the learning procedure and for the type of equilibrium to ahihihe procedure
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converges. Greedwald and Hall [35] then generalised theoaph even further,
introducing Correlated-Q-Learning (CE-Q) variations fongel-sum games.
Correlated equilibrium is an important conceptual stepabse action selec-
tion has a functional effect on the system response. Sireephbonents’ action
selection is essentially parameterised by the player®madelection, selected
action modulates the system response, whichdgreamicconcept, though de-

generate relative to the genesgistem dynamics

2.6 Multi-agent POMDPs

Fictitious Play can also be found in algorithms for disttémiversions of POMD-
Problems, e.g., [59, 61]. However, before we discuss whatHiatitious Play has
there, we need to define what distributed POMDPs are. Thisosqurovides the
necessary definitions and discussion.

Multi-agent POMDPs are conceptually a straightforwar@éesgion of the MDP
idea to domains where the action space is factored by thepteutontrollers that
activate different portions of the action space. HoweVesre are several param-
eters that can be extended in more than one way, which leaasnaltitude of
multi-agent POMDP models, rather than a single uniformresiten. To quote the
call for papers for the Multiagent Sequential Decision MakiMSDM) work-
shop [56]: “... i.e., MMDP, Dec-MDP, Dec-POMDP, Dec-MDP-CoMTDP,
COM-MTDP, R-MTDP, E-MTDP, I-POMDP, POSG, POIPSG, ND-POMDR, T
Dec-MDP ...”. Only two basic types will be presented here ¢ondnstrate the
major trends of the sub-field: ND-POMDPs and Dec-POMDPs.

The environment of general case Dec-POMDPs are defined hyples



CHAPTER 2. BACKGROUND AND RELATED WORK 27
< S, A=xN A, T, {0}, {0} Y, >, where
e Sisthe set of all possible system states.

A = xN A, is the joint space of actions. Ea¢hy,...,ay) = a € Ais

composed ofV elements, where; € A; is set by agent. Thus the system

containsN agents.

T :Sx A — II(S) represents the stochastic transition function. Notice tha

the transition depends onj@nt actiona € A.

O; represents the observation space of agent

Q, : §x Ax S — II(0;) is the stochastic observability function that
dictates the distribution of the&th agent’s observations based on the system

transitioning from one state to another underjthiet action.

It is important to notice and underline that agents depeneaah other in two
points in the environment. First, system transition degeowl the joint action
taken by the agents, which correlates their action selegirocesses. Second,
any agent’s observation depends on jihiat action as well, which means that
the agents’ actions can produce mutual interference on tespective sensory
activity,®

As is the case with MDProblems, the Dec-POMDProblem coraplte envi-
ronment description with a utility function and an optintalkcriteria with respect

to that utility function:

3This is actually found in submersible vehicles, where sqithes, produced to help the

vehicles orient themselves, interfere with one another.
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e R: S x AxS — Ris the utility function (reward or cost) that depends
on the system transition that occurred underjthet action taken by the

agents.

e The utility is usually accumulated for a limited tin¥e without discount,
or for an infinite time with a discount factor < 1, and agents are set to

maximise the expected value of this accumulation.

The policy,r;, followed by agent, is guided by the sequence of observations
it received thus far, that is; : OF — II(A;). Thejoint policy is then simply the
multi-dimensional functionr = (7, ..., mn) : (xO;)* — II(xA4;), with the con-
trol/planning task set to find the joint policy that satisfiee optimality criteria.
Notice that this echoes, if not mirrors, the Game Theory oevmixed strategies
under the Nash equilibrium principle: independently aggbliuncorrelated (other
than through the environment response), policies.

The result of this extension to MDPs is an extremely powarfatelling in-
strument. Unfortunately, the general case was proved tdéMNcomplete for an
exact solution [8], and then proved to be inapproximable ¥&}. The inapprox-
imability result is based on an interactive proofs concepigere the system plays
the role of the proof verifier and the agents try to cheat ihc8ithe agents can
communicate only through the system, but not explicitlyg aimce the optimality
criteria strongly depends on agent correlation with resjoethe system state tran-
sitions, agent observations, and the utility structureés itery easy for a verifier
to catch agents cheating. Thus to resolve this complexityerethe optimality
criteria or the correlation between agents needs to be raddifihe Dec-POMDP

literature focuses on modification of the inter-agent datiens, and spawns a va-



CHAPTER 2. BACKGROUND AND RELATED WORK 29

riety of limited models. These models have a significanttjueed computational
complexity, but unfortunately lose as much modelling po(gee e.g., [90, 33]).

One has to notice the following trends of Dec-POMDPs, anaat 6f most
of the POMDP-based multi-agent models:

e The policy of agent behaviour is precomputed off-line, anentis fixed
during execution. As a result, if the environment model ipiietise with
respect to the real world, the agents fail to cope with instescies or to

utilise opportunities.

¢ In spite of the optimality criteria containing an averades policy is com-
puted in the mind set of the worst-case scenario. That igassible de-
viations with respect to the average are counteracted gatgimilarity to
the way that MiniMax mixed strategies are computed. Nagherahan the

correlated, equilibrium intuition guides these policies.

e The optimality criteria is considered an invariable, and/ersally correct,
measure with respect to the control task. As a result, thesircmmponents
will be modified, and agent dependencies untied, in an attedgvercome
the computational complexity incurred, but not the optitgadriteria or its

design principles.

Although, several works attempt to defy the aforementiainexds, e.g., [61,
59, 84, 25, 32], they remain within the bounds of the origimtimality criteria,
and thus retain the major computational complexity trend.

MiniMax and the Nash equilibrium mindset is not the only tege of Game

Theory that crossed into use by the decentralised versiddA®MDPs, and some
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of them bear more positive charge. For instance, in ND-POM[BR], and in the
underlying JESP algorithm [59], the principle of FictitRlay combines with the
distributed constraint satisfaction principles, and b a distributed approach
to the joint policy computation.

In JESP [59] agents start with random policies and then egehtan turn
changes its policy to optimise utility, keeping other ageolicies fixed. Notice
that this is exactly in accordance with the alternatingittazts Play principlé.
For ND-POMDPs, it has been noticed that the correlation betwagents induces
a graph structure, thus making it sufficient to take into aot@nly changes in
the policy of the neighbouring agents with respect to thapgr This led to a
distributed version of the JESP algorithm, reminiscentiofutaneous update
Fictitious Play [61].

These works mark an important step towards an on-linejloliséd solution to
control in multiagent Markovian environments. Howevertlaése modifications,
even the most recent (e.g., [85])—the acknowledgementeofithited sphere of
interest and effect, the need for distributed and on-lingatg of the policy—fail
to cure the effect inflicted by the chosen (and preservedhagail odds) opti-
mality criteria inherited from single agent MDPs and Gamedry. Practical
application of the distributed versions of POMDPs remaesrhatter of heuris-
tic and approximate solutions, fine-tuned for a specificiappbn or experiment.
The theoretical inapproximability and complexity resultd, 73, 90, 33] loom
over these algorithms, for none, with the notable exceptiosingle agent work

similar to [41, 40], provide a sound analysis of the appration coefficient they

4The subtle difference between alternating and simultam&atitious Play was noticed in, for

example, [7]
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give.

Dynamics Based Control (DBC), the subject of this thesis, prep@snew
optimality criteria, justified both in terms of partial olvgability and knowledge,
and in terms of limited reasoning resources of an agentsllinitited form, spe-
cialised for Markovian domains, this results in an on-lirexithle and adaptive

solution to the control problem both in single and multi-aigenvironments.
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Chapter 3

The Dynamics Based Control (DBC)

Framework

“Everything flows, nothing stands still.”
“Nothing endures, but change.”

Heraclitus, 535-475BC

“The universe is change; our life is what our thoughts make it.”

Marcus Aurelius, 121-180AD

Before the details of Dynamics Based Control (DBC) are presemtedyill
look to a real-life mechanism for inspiration: human visi@nd specifically
motion-based separation. Motion-based separation allevis discern a moving
object otherwise perfectly camouflaged by its backgroumd.iristance, a quietly
sitting dalmatian dog in front of a black spotted backgrowadld be hard to find,
but once the dog moves, we immediately spot it. This happenause weale-
tect that a certain subset of black spots have a diffedgnamicsthan the rest of

them. These dynamics distinguish that part of the visiow frghich is occupied
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by the dalmatian, and allow us to recognise it for what it is.

This dynamics recognition process can be, and in fact isyolbed. For ex-
ample, in a Computer Graphics (CG) exercise, by moving a setloficed dots
on a two-dimensional screen, we can create a powerful irrmef a three-

dimensional object, e.g., a rotating sphere.

3.1 DBC Components

Dynamics Based Control follows the same patterns as the CGisxabove.
Assume a controlled dynamic syste&Sn(the set of coloured dots), a tracking or
a recognition algorithnl, (human vision), and an ideal dynamics(the rotating
sphere). The task of the controller would then be to feed th&osystenS a
sequence of actions, so that based on the output 8attme algorithmL will
reproducer™ or a close alternative.

However, since we would like to mathematically formulatis ontrol prob-
lem, we do not deal with these components directly, but ratiedel them, and

base our decisions on these models:
e A model of the environmerfy’
e The tracking/recognition algorithi’
e The target*, and other possible outcomeslaf

Since we allow the control solution to err, but would like &strict that error,
we also need to define a measure of proxinidtyhetween two different outcomes

of L.
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Given the mathematical formulation the control problem bandefined as

following:

Definition 1 Given< S, L, 7*,d > as above, find a control method, based on the
mathematical model &, so that the algorithni. will recreate a dynamics model

closest tor*.

3.1.1 A Note on Versatility of System Dynamics

It is important to underline the strength and versatilitghad dynamics-based task
representation. As was noted in Section 2.1, the functim@ksentation of sys-
tem dynamics are capable of capturing a wide variety of gaysystems, or, in
fact, any system admitting an approximate mathematicalrge®n. Even with-
out knowing whether any specific behaviour can be inducedinvé system, or
what control signal would be required, a dynamics-basedrg#®n allows an
explicit description of the desired system behaviour.

Furthermore, some tasks are inherently dynamic. For instgatrolling a
region (e.g., in a museum) requires complete coverage |$mt@quires stochas-
ticity to reduce predictability by a potential intruder. i vehicle behaviours,
such as landing and acrobatic figures, can be comfortablyites by an auto-
nomic dynamic system, but would take a significant desigorefd be described
in terms of system state transition utilities.

The direct representation of the desired behaviour in thegeand mathe-
matical vocabulary of the overall system description supfaster feasibility and
design cycles—a beneficial engineering outcome, utilisettié® Dynamics Based

Control architecture described in the next section.
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3.2 DBC Architecture

The specification of Dynamics Based Control (DBC) can be brokemtimree

interacting levels: Environment Design Level, User Lewagld Agent Level.

e Environment Design Levelis concerned with the formal specification and
modelling of the environment. For example, this level wosicify the
laws of physics within the system, and set its parametecs, asi the gravi-

tation constant.

e User Levelin turn relies on the environment model produced by Environ-
ment Design to specify the target system dynamics it wisbesbterve.
The User Level also specifies the estimation or learningguoce for sys-
tem dynamics, and the measure of deviation. In a museum gaardrio,
these would correspond to a stochastic sweep schedule, muedsure of

relative surprise between the specified and actual sweeping

e Agent Level in turn combines the environment model from the Environ-
ment Design level, the dynamics estimation procedure, ¢véation mea-
sure and the target dynamics specification from the UserlL&vproduce
a sequence of actions that create system dynamics as clgessible to

the targeted specification.

As we are interested in the continual development of a s&ithsystem, such
as happens in classical control theory [95] and continwaimhg [24], as well as
in our example of museum sweeps, the question becomes hdkgte Level is

to treat the deviation measurements over time. To this eed)se a probability
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threshold—that is, we would like the Agent Level to maxintise probability that
the deviation measure will remain below a certain threshold

Specific action selection then depends on system formialisaDne possi-
bility would be to create a mixture of available system tenohuch like that
which happens in Behaviour-Based Robotic architectures [B¢ dther alterna-
tive would be to rely on the estimation procedure providedhgyUser Level—to
utilise the Environment Design Level model of the environirte choose actions,
S0 as to manipulate the dynamics estimator into believiagaltertain dynamics
has been achieved. Notice that this manipulation is notgit®t via the envi-
ronment. Thus, for strong-enough estimator algorithmsgassful manipulation
would mean a successful simulation of the specified targeduaycs (i.e., beyond
discerning via the available sensory input).

DBC levels can also have a back-flow of information (see Figuig. For
instance, the Agent Level could provide data about targetdycs feasibility,
allowing the User Level to modify the requirement, perhag=uging on attain-
able features of system behaviour. Data would also be éaifbout the system
response to different actions performed; combined withreadyics estimator de-
fined by the User Level, this can provide an important tooltha environment

model calibration at the Environment Design Level.

Model, S Estimator, L
. Ideal Dynamic
Env. Design User y s Agent
. I
Estimator, | Dynamics Feasibility
T System Response Data

Figure 3.1: Data flow of the DBC framework
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Extending upon the idea of Actor-Critic algorithms [44], DB@&td flow can
provide a good basis for the design of a learning algorithon.example, the User
Level can operate as an exploratory device for a learningrigiigm, inferring an
ideal dynamics target from the environment model at hant wauld expose
and verify most critical features of system behaviour. is ttase, feasibility and
system response data from the Agent Level would provide ifgymation for an
environment model update. In fact, the combination of tahsi and response
data can provide a basis for the application of strong legraigorithms such as

EM [11, 63].

3.3 Control and Planning Perspectives

A control solution is devised and performed by the DBC Agereleand it is
that level upon which we will now concentrate. The task a DBG#tgfaces
can be viewed both as a closed loop control [95] problem, and aontinual
planning [24] loop.

As Figure 3.2 shows, the closed loop control perspectivéisonis: a DBC
Agent will apply an action to which the environment will resp and provide
an observation; the observation will be processed by thamjes estimator, and
resultin an update of the system dynamics estimate; thengigsaestimate in turn
will be compared to the reference of the ideal dynamics, hadontrol algorithm
will produce another action.

The control perspective requires an additional assumpabsent from the
general DBC framework. Dynamics estimates should not vagy (strong) dis-

continuous fashion with respect to the action variation.
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Actions ]
Environment

\ 4

DBC Agent

7 N

. ) Observations
Dynamics Estimate  §

Dynamics Estimator

Reference (Ideal)

Figure 3.2: DBC Agent as a control loop

This assumption, however, naturally occurs in many physn#ion models,
and by itself would not constitute a major difference with DB®e difference
lies in the data that flows through the loop. In a classicatrobfoop, the system
state would be estimated and used as a basis for the corgnall siariation. In
DBC, on the other hand, it is the estimatesystem dynamicghat is at the base
of the action selection procedure.

Yet, with a wide array of control methods available, it isdhao avoid an
attempt to resolve the DBC Agent problem using one of the idaksmethods.
The most tempting among themnsodel following, since it also has a dynamic

system as a reference.

3.3.1 The Model Following Perspective

Under the model following principle the system is contrdlies a function of the
error between the ideal and actual responses. Since the DBQO&yel provides
the ideal dynamics*, it may be possible to construct a model following controlle
with 7* as the reference. It then seems feasible that the envirdnmikifollow

7%, thus forcing the estimation algorithia to reconstruct-*. That is, model

following seems to be a trivial solution to DBC Agent control.
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However, there are two problems with such an approach., Einsay be much
easier to fool the estimation algorithinthan actually to control the environment.
For example, trivial frequency analysis of the sequepéeT, H, T, H,T, H,T}
would suggest that a fair coin was used to create it, in sgitbefact that the
sequence is more likely to be of a deterministic origin.

Noise and stochasticity of the controlled environment ethe second rea-
son for model following to fail as a DBC solution. The algonitil. can deviate
away from its7* estimate, and then never return to it, even if the envirorimen
will strictly follow 7* thereafter. Much stronger means may be necessary, as can
be seen from the example of the noisy prisoner’s dilemma][lAG@tandard Tit-
for-tat strategy is thrown off-sync by noise, and a modifaatby generosity or
contrition is necessary.

The model following principle, however, does not have togamirate on the
environment as its control subject. Instead, it is posdibhew the pair, formed
by the environment and the dynamics estimator, as the dsuibgect. In this case,
one can argue that a DBC Agent would compute actions as a dunofierror
between the response of the environment-estimator paih&naptimal dynamics
7*. Thatis, one can see any DBC Agent as a form of model followig.in this
caser™ would need to be the response ofidaal estimatoywhich it is not—*

IS a constant reference.

This analysis of the model following principle’s failure tirespect to the

DBC Agent control problem exposes an interesting paralleriother control

principle: Perceptual Control.
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3.3.2 The Perceptual Control Perspective

Perceptual Control is a psychological theory of animal anddnubehaviour [71].
It debates the “mechanical” view that sees behaviour as@itimof perceptions
received by an organism. Instead, Perceptual Control stiaé¢san organism’s
behaviour is a means to control its perceptions.

Since the dynamics estimation algoritiincan be seen as part of an agent’s
perception system, it follows that control decisions mageatbBC Agent are
directed at producing desired perceptions. In a sense iesnBIBC a formal
engineering counterpart of Perceptual Control theory.

Still, if we would like to deal with systems where variatiarot continuous,

or simply not metric, we may need to take the planning petspec

Actions .
DBC Agent »| Environment
Sequence
A A
) ) Observations
Dynamics Estimateg ¢ ¢ ¥
Dynamics Estimator

Reference (ldeal)

Figure 3.3: DBC Agent as a continual planning loop

3.3.3 The Planning Perspective

To see DBC as a form of planning, one simply has to modify tha fliatv diagram
to that of Figure 3.3. Seen from the planning point of view, dlgnamics estimator
becomes akin to plan recognition, answering the questhat plan is in effect
to have caused the observed changes?”. In this situatemBC agent may need

to provide a sequence, rather than a single action, and thenalgs estimator may
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receive more than one observation at any given time.

The DBC Agent receives the reaction of the dynamics estimatioich pro-
vides both plan failure and opportunity information. Fertimore, the DBC Agent
has to utilise both failures and opportunities, otherwigeay fail to force the es-
timation algorithmL to recognise*. As a result, the DBC Agent can be seen as

a continual planner [24].



Chapter 4

DBC for Markovian Environments

“Should old acquaintance be forgot...”
Count of Monte Cristo
“...and then the fun began”

N. Bonaparte

(from R. Asprin epigraphs)

Without reducing from the general power of DBC, an applicatibtne frame-
work requires specification of a (type of a) mathematical ehaded to describe
the environment. In this section, DBC will be applied to donsailescribed as
Partially Observable Markovian Environments. It is impmoittto underline at
this point the connection and the distinction between DBCtardPartially Ob-
servable Markov Decision Problems (POMDPSs) discussed atic3e2.2. Both
POMDPs and the Markovian projection of DBC rely on the sameheragatical
model of the environment: a Partially Observable Marko\Eawironment—and
this is the connection between them. This is, however, the @mmon point.

DBC has an entirely different control task specification aptinality criteria.

43
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This, in fact, makes the difference so profound that, inespftthe environment

description being the same, the two approaches cannot inalilgrcompared.
Given the assumption that the environment is mathematicatidelled by a

Partially Observable Markovian Environment, DBC can be #jgecin a more

rigorous manner. In this case, the phases or levels of DBC €aerén as follows:

e Environment Design level is to specify a tuple< S, A, T,0,Q,sy >,
where:
— S'is the set of all possible environment states;

— sp Is the initial state of the environment (which can also beveie as

a distribution overs);
— Alis the set of all possible actions applicable in the envirentn

— T is the environment’s probabilistic transition function:
T:58xA—IIS).

That is,T'(s'|a, s) is the probability that the environment will move

from states to states’ under actionu;

— O is the set of all possible observations. This is what the@engput

would look like for an outside observer;

— Q is the observation probability function:
Q:5xAxS—I(0).

That is,2(o|¢, a, s) is the probability that one will observe given

that the environment has moved from state states’ under action.
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e User Level in the case of a Markovian environment, operates on thefset o
system dynamics described by a family of conditional prdtiss

F ={r:SxA — IIS)}. Thus ideal or beneficial dynamics can be
described byr* € F, and the recognition or tracking algorithm can be
represented as a functidn: O x (A x O)* — F; thatis, it maps sequences
of observations and actions performed so far into an estimat F of
system dynamics.

There are many possible variations available at the Useelltevdefine

divergence between system dynamics; several of them are:

— trace distancer L, distance between two distributiopgndg

D). a()) = 5 3 Ipla) -

— Fidelity measure of distance

F(p(-),q(-) = Y V/p(@)q(x)

T

— Kullback-Leibler divergence

D )1
xr(P()lla() Zp og 72 )

Notice that the latter two are not actually metrics over ihece of possible
distributions, but nevertheless have meaningful and itaporinterpreta-
tions. For instance, Kullback-Leibler divergence is an amt@nt Informa-
tion Theory tool [22] that allows one to measure the “pricééncoding an

information source governed lgy while assuming that it is governed py

The User Level also defines the threshold of the dynamicsatexiproba-

bility 6.



CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 46

e Agent Levelis then faced with a problem of selecting a control signatfun

tion a* to satisfy a minimisation problem as follows:
a* = argmin Pr(d(r,, ) > 0)

whered(r,, 7*) is a random variable describing deviation of the dynamics
estimater,, created by under control signat, from the ideal dynamics*.
Implicit in this minimisation problem is thak is manipulated via the en-
vironment, based on the environment model produced by thediment

Design Level.

4.1 The Extended Markov Tracking (EMT) Solu-
tion

Extended Markov Tracking (EMT) is a specific form of systenmayics estima-

tion, and EMT-based control instantiates DBC in Markovianiemments.

e Environment Designproduces a Markovian partially observable tuple

< S AT 0,Q, s >

e User Levelof EMT-based control defines a limited-case target system dy
namics independent of action:
F={r:5—=T11(9)}.
It then utilises the Kullback-Leibler divergence measaredampose a mo-
mentary system dynamics estimator—the Extended MarkasKing (EMT)

algorithm. The EMT algorithm keeps a system dynamics eséimg,
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that is capable of explaining recent change in an auxiliaryeBeamn sys-
tem state estimator from;_; to p;, and updates it conservatively using
Kullback-Leibler divergence. Since,,,, andp;_1, are respectively the
conditional and marginal probabilities over the systentédesspace, “ex-

planation” simply means that

pu(s’) = ZTEMT(SI‘S)ptfl(S)a

and the dynamics estimate update is performed by solvinghamsation

problem:

Temr = Hpepea, TE}V}T]
_ : t—1
= argmin Dr (T X pe-1l|Tppr X pr-1)

s.t.

pil() = S X pra)(s', )

s

pioi(s) = S X pia)(s', )

s/

e Agent Level in EMT-based control is suboptimal with respect to DBC
(though it remains within the DBC framework), performing eug action
selection based on prediction of EMT's reaction. The praaficis based
on the environment model provided by the Environment Desgal, so
that if we denote by, the environment’s transition function limited to ac-
tion a, andp,_; is the auxiliary Bayesian system state estimator, then the

EMT-based control choice is described by

a" = arg min Dy (H[Ty X ps e, Tparr) |1 T° X pia)-
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4.1.1 Intuition and Mathematics of EMT

Extended Markov Tracking perceives the world as a homogen®tarkov
chain, and tries to recover the transition matrix that goget. The algo-
rithm bases its incremental update on examples of two cotisedistri-
butions over the system staje, |, p;. EMT assumes that the second distri-
bution is obtained from the first one by an application of the transition
matrix of the Markov chain it attempts to recover. Howeveércs there is

a continuous subspace of matrices that would provide the $eansition
effect for any two distribution vectors, a reference maisineeded, and
EMT uses its previous estimate,,} as such a reference. As a result, the
mathematical problem EMT faces is the recovery of a jointrithstion with

given marginals, as is described in [45].

TEMT = H [ptapt—h TE\}T]
o : t—1
= arg me Dy (7 X pealTpar X Pe1)

s.t.

pils) = 37 X pra)(s', )

s

pioi(s) = 327 X pit)(s', )

s/

The mathematical program thus obtained is a convex optifoisproblem
over a convex domain, and is solvable in polynomial time. tfv@nmore,
in [45], Kullback provides an iterative procedure, latentedthe iterative

proportional fitting that provably [46, 45] converges to the solution.
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The following is then the finite precision adaptation of thgoaithm to the
discrete Markov chain problem of EMT:
0. Initialisation:
— Set precision (e.g.,= 5 * 107°) andt = 0
— Set base matrix from corrected targg{(i, j) = i r0e—1(5)
1. Computemp;(i) = %j Q:(i,7)
2. SetQy3(i,7) = i) (tmpa (1)) QUi )
3. Computemp,(j) = ;Qt+%(i,j)
4. SetQr1(i, j) = pe-1(J) (tmpa(5)) 7' Quy 1 (4, 5)
5. Sett=t+1
6. if [[tmpy — pe1 || + |[tmp2 — pe| >=€

— Goto 1

7. Setrhy(ilf) = %)

4.1.2 The EMT-based Agent Level Control Algorithm

Given that the mathematical optimisation problem of EMT bansolved
by the iterative algorithm above or other convex optim@atnethods, the
overall DBC Agent Level algorithm is formalised as follows:

0. Initialise estimators:

— the system state estimatay(s) = sq € I1(5),
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— system dynamics estimator

TJ%MT(‘§|S> = p”'m"(gls)
Set time tot = 0.

1. Select action* to apply using the following computation:

— For each action € A predict the future state distribution
ﬁ?+1 =T, xpy

— For each action, compute

D, = H(p{\ 1, Pt TEMT)

— Selecta* = arg min (Dxr (Dallr)),,
2. Apply the selected actiaff and receive an observatiore O.
3. Computep,.; due to the Bayesian update.
4. Computerphiy = H(Drs1, Pe, Tonr)-

5. Sett :=t+ 1, goto 1.

To demonstrate how EMT-based control works, an aircrafieaanding sce-
nario has been formalised as a Markovian environment anveédaising an EMT-

based controller.

4.1.3 Validation Experiment: Aircraft Landing

Consider an airplane approaching the landing deck of anadircarrier (Fig-

ure/4.1). To land safely the airplane has to keep its angl@@faach in a narrow



CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 51

corridor of about half a degree. However, the landing detdheis up and down,
air streams are unstable, and the aircraft may be damagedyesilt, the ap-
proach angle constantly changes, and the airplane pildbhedjust the approach
constantly. To assist the pilot, a set of coloured lightsrggrted into the sky,

colour coding different angular sectors of approach.

FAST FLASH
6.0 Degrees
SLOW FLASH
4.0 Degrees

STEADY 0.75 Degrees

'ON CENTERLINE TO TOUCHDOWN STEADY 0.50 Degrees

STEADY 0.75 Degrees

SLOW FLASH
Degrees

FAST FLASH
6.0 Degrees.

~

Figure 4.1: Landing Scenario for EMT control

This landing scenario can be easily modelled by a random axadk a linear

graph (Figure 4.2), and defines the following Markovian mdde A, T', O, Q, so }:
e Sis a(discrete) set of valid approach angles.

e A is a (discrete) set of adjustment actions taken by the pilotthis ex-
periment, the sefl = [1 : 2 x F,,,, + 1] was created to reflect the effort
exerted to increase or decrease the approach angle, wiedrg thparam-
eter allowed finer granularity of the action space, as wilebiglent in the

transition function parametrisation.

e T:S5x A — TI(9) is the stochastic transition function, that models random
landing deck pitch, and aircraft response. For any actitinja, -) repre-

sented &-step simple random walk along the linear graph (see Fige 4
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Each random step’s left, right, and stay probabilities wemaputed based

on the action applied.

Denote byp* the probability to move right (increase the approach angle)
by p~ the probability to move left (decrease the approach angleg, by
p the probability of the approach angle remaining the sameenTdiven

actiona € [1 : 2 F,,,,, + 1], these probabilities were computed as follows:

— Let p° be the parameter that denotes the “natural” tendency ofithe a

craft to maintain the angle of approach.

— Let F = «=fmaee=l anda = £H. Thusa denotes the normalised

effectofa € A =[1:2x% Fp0 + 1].

—Thenp:po*(l—@),p*:a*(l—p),]ﬁ:(1—a)*(1—p).

e O isthe set of all observations; in this case, it can be theuralbthe light
beam through which the airplane is currently flying. In thpexxment, the

set of observations was taken to be equivalent to that oftdte@ = S.

e :SxAxS — II(O) is the observability function, which takes into
account, for example, light beam failures or colour vaoiatilue to weather
conditions. Several observability versions were expeniee with, with

similar results:

— The immediate neighbourhood of the true state were equaieb

— The observations are distributed by a discrete Gaussidrtitmean

being the true state.

— The discrete Gaussian was clamped to a limited neighbodrbbihe

state, and the distribution renormalised.
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Ideally, given this model, the pilot would manage to coumteany deviation
from the ideal approach angle in one step, though, since itbeip only hu-
man, some tolerance has to be admitted. Thus the ideal sylsteamics can be

s’ = ideal
expressed by the following:*(s'|s) = , WhereZ is a normali-

otherwise

N[

Nl

sation factor and is the error tolerance.

p
1- - 1- -
g oy

Co.- ® ., O @D

~ o wodprudp o 2

Figure 4.2: Random walk model for the landing scenariodenotes transition

probability change due to an action application.

If no forces were applied, the distribution over the systéates (approach
angles) would be almost uniform. However, under the apptinaof the EMT-

based controller a Gaussian-like distribution is obtaiffégure 4.3).

4.2 The Multi-Agent EMT Algorithm

Having observed that EMT-based control works in a singlenagemain, and
noticing that the algorithm takes only polynomial time widspect to the size
of the Markovian environment model, it becomes increagimgfriguing to see
whether it would be as effective in a multi-agent domain.

To test this, the environment model has to be modified to addou multiple

agents acting simultaneously. This is done by replacingsihgle action space
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Probability

9 10 11 12 13

1 2 3 4 5 6 7 8
Position along the path

Figure 4.3: Distribution of the approach angle under EMTtoaler application.

with a Cartesian product, where each term corresponds toctlmmaet of some
agent. Observability functions are also augmented aaogihdiThus a tuple
< 8,50, A, T,{0;}1, {2}, > describes a multiagent Markovian environment

where:
e S —the set of system states, € S is the initial system state;

A = xI";A; — whereA; is the set of actions applicable by the agent

T:Sx A; x--- A, — II(S) — the system transition function;

O; — the set of possible observations for agént

Q; : S x Ax S — II(0;) — the observation probability distribution for

agenti.

Noticing that each agent can still represent its beliefauabite system state
at timet by a probability distributiorp; € TI(S), and system dynamics by a

conditional distributiorr : Sx A — TI(.S), EMT can be applied straightforwardly,
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but with one small correction. Every agent can compute tiséjbent action tuple
(ay,...,ay,), but this will be the best choice only from the agent’s locainp of
view, and he will only be able to apply his action element efjthint action tuple.
Thus the overall multiagent EMT algorithm performed by eagbnt) < i < n

is as follows:

0. Initialise estimators:

o the system state estimatay;(s) = so € I1(5),
e system dynamics estimator

70(5]s) = prior(3|s)
Set time tof = 0.
1. Select actiom* € A to apply using the following computation:

e For each actiom € A predict the future state distribution

0
Pry1s = T * Pri,

whereT, is the transition function limited to actian

e For each action, compute
D, = H(ﬁ?—f-l,ivpt»i’ Tit)
e Selecta* = arg min <DKL (DaHT*»p“

2. From the selected actiom$ = (aq,...,ay) apply actiona; € A;, and

receive an observatian € O;.
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3. Computep,; due to the Bayesian update.
4. Computer!™ = H(pi1.4, pri, 7))

5. Sett :=t+ 1, gota 1.

4.2.1 Experiment: Springed Bar Balance

Consider a long bar resting with its ends on two equal spriagg,two agents of
equal mass standing on the bar. Their task is to shift themselround so that
the bar will be level, as shown in Figure 4.4. At each time siEfhe system,
each agent has the choice of three actions: moving left @pe stoving right one
step, or staying put. Every movement of an agent has a nanpzrebability of
failing, and the probability is biased by the inclinatiortloé bar. That is, an uphill
motion will have less probability of succeeding than if tree lwere levelled, and
downhill motion will have more probability of succeedingathif the bar were
levelled. Notice that bar inclination depends on the cureggent positions on
the bar, thus creating a correlation between the effecteefigent actions, and

provides implicit information transfer between the agents

.

LS L LTSS LTSS ST LTS LSS LS

Figure 4.4: Springed bar setting

Formally the system state is described by the positionsetwlo agents on
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the barS = [1 : d..)?, Whered,,,. is the length of the bar in “steps”, and
the initial state is an unbalanced oge = (1, %z + 1). The action sets are
A; = {left, stay,right}, and the transition probability is built according to the

physics of motion as follows:
e Itis assumed that the agents are of the same mass, and thegss isn.

e The springs are assumed to have coefficiéntandk,, which are the pa-

rameters of the model.

e Given that the bar ha$ = d,,., — 1 units of length, the inclination of the

bar is computed

wherel; andl; are the relative shifts of the centre of mass with respetidgo t
first (leftmost) and second (rightmost) springs, gns the standard gravity

coefficient.

e Letp € [0, 1] be a parameter determining the general mobility of an agent.
Then the probabilities of successful right;, and left,p~, steps are com-
puted by:

pT=05x%(1—2x%p)*sin? — 0.5 % sin; +p

p~ =0.5% (1 —2xp)*sin? + 0.5 % sing +p
Two observation schemes are considered:

1. O; = S = {all positions of the two agents); = €, and creates uniform
noise over the immediate neighbourhood of the real joinitiposof the

agents.
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2. O; = [1 : d,..:) @and represents the position of the observing agent.
Q2; creates a uniform noise over the immediate neighbourhodtieobb-

serving agent’s real position.

In the first observations scenario, agents converge to a synenposition
around the ideal centre of mass (given that the springs asdasare equal, this
is the centre of the bar). An example run can be seen at Figére Average

deviation with confidence bars is shown at Figure 4.5 (left).

2— T T T T T T T T 15

Nl 1 _
05K
05H g
<
§
0 y d g of

Y L L L L L L L L _15 L L L L
10 20 30 40 60 70 80 90 100 10 20 30 40

(a) Observational Scenario | (b) Observational Scenario Il

Figure 4.5: Multiagent Scenario: Deviation from the ideathtte of mass.

In the second observation scenario, where agents have oisly sbservations
of their own position, an interesting form of behaviour igendered. Agents
cannot step off the bar; any action that attempts to do se. fadgether with the
symmetric nature of the problem, this creates a Schellioglfpoint [88], where
each agent occupies the far end of the bar, thus balanciAgemnts’ positions in
the second observational scenario quickly converge tddbel point.

What's even more interesting is the way they do so. The irstiale of the

system places one of the agents at the far end of the bar, thieilether stands
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=15

‘max

Position on the bar 1< pos <d

Time step

Figure 4.6: Multiagent observational scenario |.

quite close to the middle. The intuitive way to move towarke focal point
position (two far ends of the bar) would be for the second agemove away
from the centre, while the first agents stays put, espeaallye agents do not see
each other. Recall though that the bar would then be tiltenlyish the second
agent down. EMT Control compensates for that, and in manyrerpats moves
the first agent towards the middle of the bar, thus helpingdoend agent to reach
its destination; it then “recalls” the first agent to the arag far end position. This
behaviour can be seen in the example run in Figure 4.7 (left).

However, because of observational noise, the first agergtsoms overshoots,
moving too far. EMT Control of the second agent detects thdtraoves the sec-
ond agent towards the centre of the bar, allowing the firshiigecorrect its mis-
take. At its extreme, this behaviour can cause “switchingiere agents switch
their relative position, passing one another at the cerstreghawn in Figure 4|7
(right). However, EMT Control agentslways manage to balance the bar, as

shown by the statistical data in Figure 4.5 (right).
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the bar 1<pos<d

Position on the bar 1< pos <d___ =15

Position on

Figure 4.7: ‘Helping’ (left) and ‘Switching’ (right) beh&awrs
4.3 Multi-Target EMT Algorithm

At times, there may be several behavioural preferences. ekample, in the
case of multi-robot movement in formation, two preferenmesnotion direction
exist—one dictated by formation keeping, the other by altstaollision avoid-
ance. Successful formation navigation requires a robotit@e to, and balance,

both of these behaviours. For EMT-based control, this wookgn facing sev-

eral tactical target§r; }*_,, and the question becomes how to merge and balance

them. A balancing mechanism can be applied to resolve thiris

Note that EMT-based control, while selecting an actionat@e a preference
vector over the set of actions based on their predicted pedioce with respect to
a given target. If these preference vectors are normalikegl,can be combined
into a single unified preference. We thus replace the stag&Wd-based control

(the action selection stage) by the following:

1. Given a set of tactical targe{s; }X |, and their corresponding weights

w(k), select actiorn* based on the following computations:
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e For each actiom € A predict the future state distribution

Py = T4 * pg:

e For each action, compute

-D(z = H(ngrhpta Tt)

e For each: € A andr} tactical target, denote

V(a, k) = (Dkr, (Do)

pt

Let Vi(a) = ZikV(a, k), whereZ, = > V(a,k) is a normalisation
acA
factor.

e Selecta* = argmin 22:1 w(k)Vi(a).

The weight vectors = (wy, ..., wk) allows the additional “tuning of impor-
tance” among tactical targets without the need to redesigargets themselves.
This balancing method is also seamlessly integrated it T-based control
flow of operation, and is compatible with its multi-agentemdion. This compat-

ibility makes possible the following experiment.

4.3.1 Experiment: Multi-Target Bar Problem

To test the multi-target version of the EMT-based contrgbathm, recall again
the Spring Bar multi-agent environment described in Seeti@ri limited to only
one observation scenario: both agents receive indepemdésy observations
about their joint position. That ig); = S = {all positions of the two agen}s
2, = Qy and creates uniform noise over the immediate neighbourbbthek real

joint position of agents.
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Two conflicting targets are set. One is to balance the spdihge, while the
other is to maintain a preset distance between themsehas. thNat these targets
are not requirements of the system state, but of the lawsrgioggits behaviour.
For instance, distance maintenance is expressed by a dymamatrix, that shifts
any given state into one that possesses the correct dispaoperty, and EMT-

based control sets out to achieve this kind of constrairttiwithe system.
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Figure 4.8: Example Run of Dual-Target Springed-Bar Problem

Although the two behavioural targets are compatible, thathere exists a
position of agents on the bar that satisfies both, the tasgetsxdeed conflicting
and interfering. For example, assume that we want agents #&i b distance of
4 from each other. Denote Wythe coordinate line at the centre of the bar, and
assume that the system’s noisy response forced the agémsositions—2 and
+3. In this case, the balancing target can encourage the motithe left agent
from —2 to —3 thus balancing the bar, but violating the distance condtran
the other hand, the distancing target could be satisfieddogdime agent moving
right to —1, violating bar balancing even further.

Despite the constant conflict between the two targets, agdit EMT-based
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control equipped with multi-target action selection mathtp maintain both tar-
gets quite closely. Although relentless system noise chflsetuations, as seen
from an example run at Figure 4.8, these fluctuations ocduareund the only
common position that satisfies the demands of both targetdact, the mean
values of distance between agents and the position of theecehmass almost
perfectly matches the ideal, as can be seen from the valtrédifons in Fig-

ure 4.9 (left graph), which in this experiment would be 4 andspectively.
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Figure 4.9: (Fitted normal) Distribution of distance andhtte of mass in dual-

target springed-bar problem with (0.2, 0.8) (left) and (0.4) (right) balancing

Using the bar setting, multiple balancing vectors have ldested. For ex-
ample, the distribution in Figure 4.9 was obtained from theght vectorw =
(0.2,0.8), that is, setting the balancing targetle2 and the distancing target at
0.8. Changing the weight vector to hé = (0.4,0.6) exposes an interesting
property of multi-target EMT-based control. Since the ¢tsgvere weakly com-
patible, the algorithm maintained both targets with the be¥ancing vector, as it
did with the old one. The difference occurred when the caormtigorithm had to

correct system behaviour in response to noise—the algorthas more ready to
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briefly deviate from the distancing target than the balagoine, as shown by the
distributions in Figure 4.9 (right graph).

However, as the weight of the the balancing target increassanly the vari-
ance of the distance between the agents changed, but alseetdre EMT-based
control began to lean strongly towards the balancing tamjetost abandoning
the distancing target. This can be seen clearly from Figut®,4vhich depicts
changes of the distance and centre of mass distributions,nasaa function of

weight of the target.

9

I I I I I I
0.1 02 03 0.4 05 0.6 0.7 0.8
‘Weight of bar balancing

Figure 4.10: Means of distributions with respect to the Weigf the balancing

target. Error bars depict variance.

Note that the balancing target had a very strong presende aveight0.4,
as expressed by the mean and variance of the centre of masisutiisn. On
the other hand, the distancing target at the weigtit ©#had much less attention
from EMT-based control. This inequality in attention togats with respect to
symmetric weight vectors has been contributed to the vgrgirengthof pref-
erence expressed by the targets. Due to their constru¢lierhalancing target

included preferential differences of dozens of orders ofjmitaide over different
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transitions, while the distancing target featured prefeeadifferences of only 2—4
orders of magnitude.

As a result, any change in system dynamics had much highexciyth re-
spect to the balancing behavioural preference, which tadsalstronger effect on
proper system behaviour. The distance tactical target wasmild in compari-

son, and thus had less influence on action choices.

4.3.2 Experiment: EMT Playing Tag

Multiple targets can also play the role of “basic behavituach as those found
in the Behaviour Based Robotics paradigm [2]. In this case jtiggesagent EMT-
based control algorithm plays the role of a behaviour sete@hd mixer, as is
demonstrated by the following experiment using the Gameagf T

The Game of Tag was first introduced in [70]. It is a single agenblem
of capturing a quarry, and belongs to the class of area swggpbblems. An

example domain is shown in Figure 4.11.

23

20| 21| 22
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71 8|Q[ 101 17 11
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Figure 4.11: Tag domain; an agent (A) attempts to seek andeaa quarry (Q)

The Game of Tag severely limits the agent’s perception, abttie agent is
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able to detect the quarry only if they are co-located in theesaell of the grid

world, in which case the game ends. Both the agent and itsyghave the same
motion capability, which allows them to move in four direets, North, South,
East, and West. These form a formal space of actions withiragk®ian envi-

ronment.

The state space of the formal Markovian environment is desdrby the
cross-product of the agent and quarry’s positions. Forrgigull, it would be
S ={so, ..., S23} X {50, ..., S23 }

The effects of an action taken by the agent are determintaticthe environ-
ment in general has a stochastic response due to the motitve guarry. With
probability q it stays put, and with probability — ¢, it moves to an adjacent
cell further away from the agent. So for the instance showhigure 4.11 and

qo = 0.1:

P(Q = 89|Q = Sg,A == 811) =0.1
P(Q = 82|Q = Sg,A = 511) =0.3
P(Q = Sg‘Q = Sg,A = 811) =0.3

P(Q = 514|Q = 89, A = 511) = 0.3

Although the evasive behaviour of the quarry is known to terd, the quarry’s
position is not. The only sensory information availablehe agent is its own lo-
cation.

For the Game of Tag, one can easily formulate three majods$:ecatching

the quarry, staying mobile, and stalking the quarry. Th&ults in the following

1The experimental data was obtained wjth= 0.2.
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three target dynamics:

1 S; = S5
Tcatch(At—i-l = 31‘|Qt = 8y, At = 5(1) XX
0 otherwise

0 S; = Sj
Tmobile(AtJrl = 5'L'|Qt = So, At = Sj) X
1 otherwise

Tstair(Arr1 = 8i|Qr = 80, Ar = 55) x dist(l

Siyso)

Note that none of the above targets are directly achievdbteinstance, if
Q. = sg and A, = sq1, there is no action that can move the agenti{p, = sy as
required by thel;.;, target dynamics.

Three configurations of the domain shown in Figure 4.12 weetluo test
EMT performance in the Tag Game, each posing a differenteainge to the agent
due to partial observability. In each setting, a set of 1Q0@mwas performed with
a time limit of 100 steps. In every run, the initial positioiboth the agent and its
qguarry was selected at random; this means that as far ase¢héwsgs concerned,
the quarry’s initial position was uniformly distributedenthe entire domain cell
space.

Two variations of the environment observability functioerna used. In the
first version, an observability function mapped all jointsgimns of hunter and
quarry into the position of the hunter as an observation. han gecond, only
those joint positions in which hunter and quarry occupidfgint locations were
mapped into the hunter’s location. The second version ihdtiised and ex-
pressed the fact that once hunter and quarry occupy the sslimine game ends.

The results of these experiments are shown in Table 4.1. 8algthe catch,
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Figure 4.12: These configurations of the Tag Game space sert u

move, and stalk target dynamics described earlier by thgiweector{0.8,0.1, 0.1],

EMT produced stable performance in all three domains.

Table 4.1: Performance of the EMT-based solution in threg Game domains

and two observability models.

Model Domain | Capture% FE(Steps
I Dead-ends 100 14.8
omniposition Arena 80.2 42.4
quarry Circle 91.4 34.6
Il Dead-ends 100 13.2
guarry is not Arena 96.8 28.67
at hunter’s position  Circle 94.4 31.63

The behaviour cell frequency entropy, empirically meadiurem trial data,
was also recorded. As Figure 4.13 and Figure 4.14 show, arapéntropy grows

with the length of interaction. For runs where the quarry matcaptured immedi-
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ately, the entropy reaches between 0.85 anc@kﬁﬁjiﬁerent runs and scenarios.

As the agent actively seeks the quarry, the entropy nevehesats maximum.

1 T 1
0.9 ~AS N~ ——————— 09 ‘\
0.8 0.8
0.7 0.7
§ 06 g 06
w w
05} 05
04 04
0.3 q 0.3 q
02, 20 20 ) % 100 0% 20 20 ) %0 100
Steps Steps
(a) Multiple Dead-end (b) Irregular Open Arena

Circle

20 40 60 80 100
Steps

(c) Circular Corridor

Figure 4.13: Observation Model I: Omniposition quarry. #Bpy development

with length of Tag Game.

2Entropy was calculated usifgg base equal to the number of possible locations within the

domain; this properly scales entropy expression into thge$, 1] for all domains.
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Figure 4.14: Observation Model II: quarry not observed attérs position. En-

tropy development with length of Tag Game.



Chapter 5

Empirical Stability of EMT-based

Control

“Only constant and conscientious practise in the Martial Arts will ensuregdmd
happy life”
B. Lee

(from R. Asprin epigraphs)

5.1 EMT Resistance to Model Incoherence

It must be noted that in all previously described experimghie controlled system
was simulated exactly as the mathematical model of the @mwvient prescribed.
However, to apply a control method in the real world one haasctmount for the

possibility that the environment model will not be precysebrrect. In this chap-
ter, rather than once more modifying the algorithm, theqrentince of the basic

EMT-based controller, and the data it provides, are sdegth To test how EMT

71
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would cope with an incoherent environment model, a simgetdollowing sce-
nario was simulated within the Player/Stage simulationrenment [31].

Robot Green is given the task of following Robot Red at a pres¢didce. To
achieve this task, two independent EMT controlléfd/T'C, andEMTC,, were
applied to linear and rotation speed modulation of a singjl@lated) Pioneer-
2X robot (Robot Green). The sensory information was receitieagh ablob
finde—an on-robot camera with basic image analysis that makestpeshe de-
tection of colour blobs within the picture. Camera inforroatwas approximately
mapped onto the observation sets: colour blob relative anelacentring within
the picture. Thus, the observation distributions provigtede meanings of linear
distance forE MT'C, and angular distance faf M 7T Cs.

Both controllers used the environment model originally cosga for the air-
craft landing scenario, since both keeping visual angleliaedr distance adhere
to the same balancing logic. The aircraft-landing modeleafse was not entirely
coherent with the real-world behaviour of the visual angld distance to Robot
Red.

Incoherence with the real-world transitions, and alsad@pendence between
the visual angle and linear distance, influenced the EMT ©@betis performance;
however, it was still able to successfully perform the tragkask. A sample run
of the EMT-controlled robot can be seen in Figure 5.1, demicthree positions
of the robots at different times. In this run, Robot Red perfedra constant loop,
and the EMT-controlled Robot Green that followed it manageddapture this
motion. Robot Greed traced a smaller loop, concentric wighdhe traced by
Robot Red. However, due to action model incoherence, RobonGlidenot per-

form optimally and reacted to the change in Robot Red'’s pasitith insufficient
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correcting actions.

Figure 5.1: Target Following with a Weakly Coherent Model

5.2 EMT-Based Action Model Calibration

Although EMT robot control suffers from an inaccurate actronodel, EMT can
also provide a remedy to the model—calibration. The sinipley to calibrate a
model would be to accumulate data on state transitions aifdiduaction model
from statistics. Though exact system state knowledge isailadle, EMT can
still estimate the transitions based on the partial infaroma Then, EMT-based

action model calibration becomes a matter of data accumnland statistics:

0. Assume a Markovian environment modelS, A, T, O, (2, s, > to be cali-

brated. For each actione A let:
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e t, be the accumulator of the EMT dynamics estimators, inséali

ty =1y,.
e N, the counter, initialisedv, = 1.

Settimet =0
1. Select and perform an actianc A.
2. Assume that system state beliefs changed fsami1(.S) to p € T1(.9).
3. Using the EMT procedure, obtain an explanatidoe= H (p, p, Prior).
4. Lett,:=t,+D,N,:=N,+1landt :=t+1
5. It t > teativration
ta

e Foralla e AletT, = 1

else goto 1

5.2.1 Calibrated Target Following

The EMTC; controller, responsible for linear speed modulation in bleot-
follows-robot experiment, was calibrated fos&tionaryRobot Red, and the re-
sulting environment model was then used in tracking a motanget. During the
calibration, the robot alternately walked to and from thrgéd, switching direc-
tion if the target became point-like (went too far away),fdhe target effectively
blocked the camera view (went too close). This proceduresemially as in [96],

with variation of the stopping criteria.
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Figure 5.2: Target Following with a Calibrated Model

Even without the calibration of the angular controller, #iodity of the system
to follow a moving object was greatly improved. This can bersi the example
(Figure 5.2) of Robot Red moving circularly. Robot Green hasoatsompletely
matched the speed and trajectory of Robot Red. In fact, RobanGzannot
simply choose to move at the same speed as Robot Red; that speg@vailable
in the action set. Instead, Robot Green exhibits more soghiet behaviour,
it alternates appropriately between two speeds that brd&tbot Red’s speed,
matching the latter on average. The distance between tluesralas still greater
than required, but it is hypothesised that this is explaimgdesidual incoherence

of the internal model (since calibration occurred for aistary object and only

one controller model).
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Chapter 6

A Short Remark on the Technical

Limitations of EMT-based Control

EMT-based control is a sub-optimal (in the DBC sense) reptasiee of the DBC
structure. It limits the User by forcing EMT to be its dynartracking algorithm,
and replaces Agent optimisation by greedy action selecfitws kind of combi-
nation, however, is common for on-line algorithms. Althbdgrther development
of EMT-based controllers is necessary, evidence so faresigghat even the sim-
plest form of the algorithm possesses a great deal of powdrdesplays trends
that are optimal in the DBC sense of the word.

There are two further, EMT-specific, limitations to EMT-bd<ontrol that are
evident at this point.

The first limitation is the problem of negative preferenca the POMDP
framework for example, this is captured simply, throughappearance of values
with different signs within the reward structure. For EMased control, how-

ever, negative preference means that one would likkertdd a certain distribution
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over system development sequences; EMT-based controkveswconcentrates
on getting asloseas possible to a distribution. Avoidance is thus unnatural i
native EMT-based control.

The second limitation comes from the fact that standardrenment mod-
elling can creatgure sensory actiorsactions that do not change the state of
the world, and differ only in the way observations are reediand the quality of
observations received. Since the world state does not eh&nT-based control
would not be able to differentiate between different seysations.

Notice that both of these limitations of EMT-based contn@ absent from
the general DBC framework, since it may have a tracking algaricapable of
considering pure sensory actions and, unlike Kullbackslegidivergence, a dis-

tribution deviation measure that is capable of dealing webative preference.



Chapter 7

Summary and Future Work

“All's well that ends well”

E. A. Poe

(from R. Asprin epigraphs)

7.1 Discussion and Summary

The Dynamics Based Control (DBC) framework, introduced by thesis in Sec-
tion/3, is directed at bringing together the concepts of g@etcal control and dy-
namic systems. Perceptual control brings into the framkeWa idea that the task
of the controller is concentrated on the sensory systerherahan on the true
environment situation. DBC thus states that the controliggkenforce a certain
output of the sensory system, which can be affected onlyenty through an
uncertain and stochastic environment. The second cruargfibution of DBC
is restating the sensory system of an agent as a system (thg)adentification

tool. That is, a sensory system does not concentrate onggngvan environ-
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ment's momentary state, but rather on identification of theirenment by the
dynamics that govern the change within the state.

Concentration on the sensory system as the subject for ¢aassentially a
recognition by the agent of its sensory limitations, whictiaes not try to over-
come, but rather embraces those limitations to simplifytdsi at hand. As the
sensory system limits the agent’s ability to decipher thddya makes little sense
to attempt to invest more effort into controlling the agsmstirroundings than can
actually be detected. Thus the Dynamics Based Control (DBC)einark, fol-
lowing the perceptual control principle, dictates us togiean agent’s behaviour
not to explicitly enforce preferred environment circunmetas, but rather to create
conditions within the environment that would be recognibgdhe sensory sys-
tem as the complete preferred circumstances. This wouldtiescompletion of
the control task to the extent that can be detected, while@ucsing on the effort
to create refinements to the control task, which would notdtealed even if they
do take place.

DBC models the sensory system as a system dynamics estinaégianithm,
and imposes several mild assumptions on the algorithm.t, Fire algorithm’s
decision has to be mutable, in the sense that it will readibdgifiy its estimate of
the system dynamics given new data. For example an infinitaonefrequency
statistics would not be usable, as it requires larger argkfaamounts of data to
modify its estimate. The second assumption is that the éhgorconverges or at
least exhibits convergent properties for a stable systelnat i, given complete
observations of a non-perturbed dynamic system, the #dfigomproduces a good
estimate of that system dynamic identity. This means thamgesobservation

estimate without memory of the past is also unlikely to bes# within the DBC
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framework.

Dynamics Based Control, as a framework, does not assume aitgtion on
the environment in which an agent is situated. However, @amcenplementation
for a specific class of environments is required, DBC adoptessary assump-
tions from that class of domains. In this thesis, DBC has bdaptad for Marko-
vian discrete time and state space environments with palgervability. Taking
into account the properties of Markovian environmentshsag dependency of
the environment development on a finite history of its stat afinite history of
the agent’s actions, Markovian class-specific definitioinfie DBC components
have been constructed (Section 4).

Given the DBC adaptation to the Markovian class environmensgstem dy-
namics estimation algorithm was constructed—Extended&Marracking (EMT)
(Section 4.1). EMT bases its estimate on two system statebdions vectors,
representing a single environment modification, and a pusvidynamics esti-
mate. EMT thus performs a conservative update, producireyedynamics esti-
mate that explains away the change in the system statebdisbm, while remain-
ing as close as possible to the previous estimate.

Extended Markov Tracking relies on an optimisation procedirst stated
in [45]. Its analysis, together with the fact that Kullbac&ibler divergence is
dual to likelihood, means that EMT tends towards a more Yileiplanation of
the observed change, with respect to the old dynamics dstiaga reference
point. Furthermore, properties of the EMT minimisationg@dure suggest that
for a constant underlying dynamics, a sequence of EMT updegakly converges
to that dynamics or its dynamic limit.

EMT has been applied as the estimator algorithm base foredgrapproxi-
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mation to the DBC framework in Section 4.1.2. EMT-based anttilises EMT

to predict the effects of an action, and greedily selectsciprathat would bring
the EMT estimate closest to the specified ideal system dewedat. The resulting
overall control scheme, in spite of being only an approxiomtimplements all
basic elements and properties of the DBC framework. Since-B&Ed control
prefers actions that produce dynamics which are closerdiiiaely with respect
to) the specified ideal dynamics}, the sequence of EMT updates over the con-
trolled system is forced towards as well, and potentially converges to it.

An important positive aspect of EMT-based control is thetBMT optimisa-
tion procedure at its base is time polynomial in the size efdlscrete environ-
ment model it uses. The same is true for the multi-target aunlti4agent cases,
introduced in Sections 4.2 and 4.3, where the procedureinsrpalynomial in all
parameters except the number of agents in the system.

One has to take notice that EMT-based control does not peavid EMT
algorithm with the true system state transition data. Btéhe EMT algorithm
is provided with the sequence of system state beliefs. Tleign®s that an EMT-
based controller does not only rely on EMT to identify thetegs dynamics, but
also serves as a filter, discarding noise from the dynamiesysepresentation.
This noise, in fact, need not come from sensory noise; idsteaan be a result
of interference by another agent within the system.

The Multiagent EMT-based control version, introduced irctiea (4.2, pre-
scribes that each agent scan the joint action space, anorpeits respective el-
ement of the optimal action tuple. If the environment cate$ the agents, and
the effect of the joint multi-agent activity is (partiallppservable, then it is con-

jectured that estimating system dynamics creates an imipiformation transfer



CHAPTER 7. SUMMARY AND FUTURE WORK 83

between the agents, and facilitates coordination. Thigecture is supported by
a successful application of the multiagent EMT-based otletrin a multiagent
balancing scenario (Section 4.2.1).

EMT-based control also has a multi-target version, preskint Section 4.3,
where the control task cannot be described by a single idsaét® dynamics.
Instead, echoing the principles of Behaviour Based Roboti¢c$He desired sys-
tem dynamics are formulated as a set of heuristic behaviqastthat need to
be interleaved, combined, and fused together to achievéesieed performance.
The target fusion is achieved by creating preference vectegr the action space

with respect to each target, and then linearly combiningntivéath respect to

some specified weight factors. Sections 4.3.1 and 4.3.2presperimental data

demonstrating that EMT-based action preference data candmessfully used to
fuse distinct, and weakly conflicting, targets.

Looking back at the data flow of the DBC framework presentedgufe 3.1,
and repeated below, Section 4.3 experiments have, in factcanfirmed that it
would be possible to use EMT-produced data at the User Levalgment and
redesign the target system dynamics. Further followindlmov of data within
the DBC framework, Section' 5 examined the effects of faultyldvenodelling
at the Environment Design level. EMT-based control is agapin a simulated
robotic domain with an incoherent world model, and exhibgsistance to this
incoherence. By calibration scheme construction, Sectidrdémonstrated that
EMT data procured at the Agent Level can be also effectiverfieironment model

calibration.
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Figure 7.1: Data flow of the DBC framework

7.2 Conclusions and Future Work

The Dynamics Based Control (DBC) Framework concentrates ool sys-
tem dynamics, rather than a specific state or a sequenceed sisemed optimal
with respect to some optimality criteria. It operates wébpect to a given dynam-
ics estimator, and if the estimator is efficient enough, th@mlled environment
itself is forced to undergo an appropriate controlled amaas well. The philo-
sophical foundation behind DBC is dictated by the perceptoatrol principle,
and allows the control scheme to be efficient with respedbecefforts it invests
to achieve aletectabladegree of task completion.

Though it is still future work to develop a general controlusion for DBC,
the control solution based on the Extended Markov TrackET) estimator
provides a good approximation with promising theoreticalmputational, and
practical trends. EMT-based variations to multiple catedl tasks and multiple
agents have been shown to work well even with incoherent@mvient models.

Formulation of a preference vector over actions, whichvadid for the multi-
target controller version, can also be used to combine ptelénvironment mod-
els with a common action space. This would further link EM&Bé&d control, and
DBC itself, with robotic applications. In such applicatipmsultiple robots have

to correlate the effects their actions have on their coatibnm and the actual task
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performance. Task completion and coordination would berissd by differ-
ent models, but are likely to have similar action spaces,imgathe multi-model
version of a DBC controller highly applicable.

Several EMT shortcomings are evident at this time, such asnidbility to
directly handle pure sensory actions. This problem, howean be easily reme-
died by changing the type of the environment model. The nat#mn of Predictive
State Representations (PSRs) [93] with the DBC framework opgagpromising
perspective, both in generalising existing DBC algorithars] in extending DBC
applicability beyond Markovian environments. A thoroudieadretical analysis
of EMT is also needed to establish convergence rates anilitgtatnd may also
reveal additional methods to amend EMT shortcomings.

It will also be important to explore the effects DBC principlaay have within
domains that are not directly formulated as a control problEor instance, in re-
peated games with dynamic opponents the conceetahingmay be interpreted
as a form of control [91]. Given that the game is repeated hrdarticipants
have dynamically changing attitudes, the problem can bghiyureformulated
as a control problem over a dynamic system, making it a doswstable for the

application of the DBC framework.
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