
Dynamics Based Control and Continual

Planning

Thesis submitted for the degree of
“Doctor of Philosophy”

by

Zinovi Rabinovich

Submitted to the Senate of the Hebrew University

September 2007

1

This work was carried out under the supervision of

Prof. Jeffrey S. Rosenschein

1

Abstract

Human society has long tried to control its environment, andthis has also

been one of the more prominent tasks of, and applications for, artificial intelli-

gence (AI) systems. With the rise of the concept of anagentwithin AI, it became

of even greater importance to endow these agents with the capability to control

their environments. Given real-world limitations on agents, however, it became

crucial to develop control mechanisms that go beyond standard control theory, in-

corporating bounded reasoning into these AI systems, recognising and utilising

the agent’s limitations regarding computational effort and complexity.

This thesis introduces Dynamics Based Control (DBC)—a novel framework

for continual planning and control in stochastic environments. While it can be

related to the principles of model-following and perceptual control (and in fact

uses these principles as a part of its philosophical intuition), DBC directly targets

system dynamics, rather than the system state. DBC views the sensory subsystem

of an agent as a continual environment dynamics estimation and identification

algorithm, and concentrates on the sensory subsystem as itscontrol subject. As

the sensory system limits the agent’s ability to decipher the world, it makes little

sense to attempt to invest more effort into controlling an agent’s surroundings than

can actually be detected. Thus the Dynamics Based Control (DBC) framework,

following the perceptual control principle, has us design an agent’s behaviour

not to explicitly enforce preferred environment circumstances, but rather to create

conditions within the environment that would be recognisedby the sensory system

as the complete preferred circumstances. This would resultin completion of the

control task to the extent that can be detected, while economising on the effort to

create refinements to the control task, which would not be detected even if they

do take place.

Being a general and flexible framework, DBC can potentially have many al-

gorithmic solutions and instantiations within different types of environments. The

thesis concentrates on the DBC adaptation to Markovian stochastic environments,

and formulates a specific system dynamics estimation algorithm for such envi-

ronments — Extended Markov Tracking (EMT). EMT bases its estimate on two

system state distribution vectors, which represent a single environment modifica-

tion, and a previous system dynamics estimate. EMT thus performs a conservative

update, producing a new dynamics estimate that explains away the change in the

system state distribution, while remaining as close as possible to the previous es-

timate.

Based on the EMT estimator, and utilising its polynomial timeperformance,

an approximate greedy algorithmic solution to the DBC control task is then de-

veloped and experimentally shown to be operational. EMT-based control utilises

EMT to predict the effects of an action, and greedily selectsan action that would

bring the EMT estimate closest to the specified ideal system development. The

resulting overall control scheme, in spite of being only an approximation, imple-

ments all basic elements and properties of the DBC framework.

During its operation, EMT-based control does not provide the EMT algorithm

with the true system state transition data. Instead, the EMTalgorithm is provided

with the sequence of system state beliefs. This means that anEMT-based con-

troller not only relies on EMT to identify the system dynamics, but also regards it

as a filter, discarding noise from the dynamic system representation. This filtering

capability has been experimentally verified by a construction of an environment

model calibration algorithm based on the EMT data.

The dynamics estimate of the environment, provided by EMT, has also en-

abled the construction of multi-agent and multi-target versions of the EMT-based

controller. In the multiagent case, it is conjectured and empirically verified that

in certain domains an implicit information transfer between the agents is formed,

enabling efficient coordinated performance without explicit communication. In

the multi-target version, EMT data forms a preference vector, enabling the merger

of potentially conflicting behavioural requirements.

Besides being a greedy approximation, several additional limitations of the

EMT-based control scheme, which stem from the EMT dynamics estimator itself,

have been identified by this research. This has led to the formulation of additional

directions of research, applying the DBC framework to other environment models

and domains, including Predictive State Representations and repeated games with

dynamically developing opponents.

Contents

List of Figures iv

1 Introduction 1

2 Background and Related Work 7

2.1 Control Theory . 8

2.2 Partially Observable Markov Decision Problems (POMDPs) . . . 13

2.3 Targeted Trajectory Distribution Markov Decision Processes . . . 18

2.4 Fictitious Play . 21

2.5 Multi-agent learning . 23

2.6 Multi-agent POMDPs . 26

3 The Dynamics Based Control (DBC) Framework 33

3.1 DBC Components . 34

3.1.1 A Note on Versatility of System Dynamics 35

3.2 DBC Architecture . 36

3.3 Control and Planning Perspectives 38

3.3.1 The Model Following Perspective 39

3.3.2 The Perceptual Control Perspective 41

i

CONTENTS ii

3.3.3 The Planning Perspective 41

4 DBC for Markovian Environments 43

4.1 The Extended Markov Tracking (EMT) Solution 46

4.1.1 Intuition and Mathematics of EMT 48

4.1.2 The EMT-based Agent Level Control Algorithm 49

4.1.3 Validation Experiment: Aircraft Landing 50

4.2 The Multi-Agent EMT Algorithm 53

4.2.1 Experiment: Springed Bar Balance 56

4.3 Multi-Target EMT Algorithm . 60

4.3.1 Experiment: Multi-Target Bar Problem 61

4.3.2 Experiment: EMT Playing Tag 65

5 Empirical Stability of EMT-based Control 71

5.1 EMT Resistance to Model Incoherence 71

5.2 EMT-Based Action Model Calibration 73

5.2.1 Calibrated Target Following 74

6 Technical Limitations of EMT-based control 77

7 Summary and Future Work 79

7.1 Discussion and Summary . 79

7.2 Conclusions and Future Work . 84

Bibliography 102

List of Figures

1.1 “Lost” Dalmatian . 6

2.1 Brachistrochrone Problem . 10

3.1 Data flow of the DBC framework 37

3.2 DBC Agent as a control loop . 39

3.3 DBC Agent as a continual planning loop 41

4.1 Landing Scenario for EMT control 51

4.2 Random walk model . 53

4.3 Approach angle under EMT . 54

4.4 Springed bar setting . 56

4.5 Multiagent scenario: Deviation of mass centre 58

4.6 Multiagent Scenario: Observations Model I 59

4.7 Multiagent Scenario: Observations Model II 60

4.8 Example Run of Dual-Target Springed-Bar Problem62

4.9 Multi-target scenario: Distance and Centre of Mass 63

4.10 Multi-target Scenario: Mean and Weight Ratio 64

4.11 Tag Domain Example . 65

iii

LIST OF FIGURES iv

4.12 Utilised Tag Game Domains . 68

4.13 Multi-target Scenario: Observation Model I 69

4.14 Multi-target Scenario: Observation Model II 70

5.1 Target Following with a Weakly Coherent Model 73

5.2 Target Following with a Calibrated Model 75

7.1 Data flow of the DBC framework 84

Chapter 1

Introduction

“If you want to make God laugh, tell him about your plans.”

Woody Allen

Ever since the dawn of humanity, people have tried to controltheir environ-

ment. The desire to see the world change for our benefit has pushed forward the

technology of control and planning, from making a fire and plans to cooperatively

hunt, to the flight-control computers of a modern aircraft, from narrative hunt sto-

ries to a variety of formal methods and mathematical models.It should then come

as no surprise that among the very first questions posed for Artificial Intelligence

systems was how to make computers plan automatically.

In the most classical AI view, the world is seen as one of a preset group of

states, and an intelligent entity can deterministically move the world from one

state to another. One instantiation of this model came to be known as State Ori-

ented Domains (SODs) [83] and is governed by the Closed World Assumption

(CWA) [87]. Under these conditions, planning and control were seen as a search

for a sequence of actions that change the world to fit some constraints on the state.

1

CHAPTER 1. INTRODUCTION 2

Approaches like STRIPS [29] flourished.

However, researchers quickly realised that the CWA has severe limitations.

Unexpected failures and uncertain environment responses spurred the improve-

ment of planning and control methodologies. Contingency resistant planning ap-

peared, giving rise toconditional plans[68, 23, 14], and planner systems like

Weaver and PRODIGY [13, 100]. Yet, these plans suffer from scalability prob-

lems: tracing all possible exogenous events and their effects tends to increment

plan size exponentially, sometimes making the entire exercise infeasible.

Refinement of plans and use of a plan hierarchy [30, 15, 62] became the next

step in attempting to solve the scalability challenge. Thisultimately resulted in a

form of planning calledcontinual planning[24], where a plan is generally updated

and corrected over time, rather than just refined with details. Unfortunately, too

many approaches to continual planning have used anupdate upon failurepolicy,

which results once again in increased complexity and cost, since the plan has to be

rebuilt. Though minimisation of plan changes is possible [27] and the re-planning

approach has been applied in some complex domains [60], preventive treatment

may be more beneficial over time despite the cost endured at each step. The

update upon failurepolicy also lacks pro-activeness, an essential element of what

we now consider an intelligent agent [109].

Another widespread framework for planning is that of decision theory [13, 14,

16]. Decision theory has introduced the notion ofutility, or preference, into plan-

ning considerations [87]. Further interconnecting with stochastic game theory, it

developed into one of the most used models for decision making under uncer-

tainty: Markov Decision Processes (MDPs). MDPs [72] are capable of modelling

uncertainty in action outcomes, as well as an elaborate range of utility gains over

CHAPTER 1. INTRODUCTION 3

time. An MDP model assigns utilities (reward/cost) to system state transitions,

and reasons about average, accumulated, and accumulated discounted utility over

finite or infinite time lines. The Bellman-Ford equation provides a state oriented

description, and dynamic programming techniques provide the means [6, 9] to

find an optimal action for every system state, thus forming a policy of action, or a

plan.

MDP models have been also extended to include partial observability of the

system state, or sensory aliasing, into so-called Partially Observable MDPs

(POMDPs) [49, 20]. Armed with this new modelling ability, the MDP approach

found many applications, including in robotics [42, 20, 43,86, 92, 36]. Unfortu-

nately, the wide range of solution techniques [58, 49], together with the focus on

the value of a system state, inherited and multiplied the computational complexity

of finding a solution, reaching even the condition of undecidability [16, 53, 52].

MDP-type modelling, however, gives us significant power in capturing a very

wide variety of domains, and its analytical power maintainsits appeal. Some

complexity studies have suggested (e.g., [74, 73]) that it is the optimality criteria,

with its momentary state focus and averaging, that are amongthe key ingredients

to the computational complexity of the MDP approach.

It is interesting to see how the modern (PO)MDP1 technology begins to turn

towards continuous spaces of system states and actions, as well as the continuous

time-line. It is hoped that analytical tools will assist (PO)MDPs to become more

applicable to complex problem domains. This is, however, somewhat peculiar,

for such a move makes (PO)MDPs resemble more than ever the classical control

1Partially Observable Markov Decision Problems (POMDPs) are a variant on MDPs, discussed

further later in the dissertation.

CHAPTER 1. INTRODUCTION 4

theory.

Classical control theory [95, 21] has strong mathematical connections with

physics, and usually describes and operates with continuous systems. A system’s

state is usually a vector that contains a sufficient set of parameters to describe a

momentary snapshot of the system, while the system itself isseen as a function

that describes the transformation of this vector over time,either by determining

the state derivative for continuous time systems, or directly determining the state

at the next time step for discrete time systems. The system state transformation

function, termedsystem dynamics, can be analysed to discover a system’s inherent

stability and dynamic properties. Control theory’s mathematical apparatus allows

it to treat uncertainty in the system state by substituting adistribution over the

system state into the system dynamics function, instead of asingle system state

vector.

As a result it becomes possible to describe a fairly complex (physical) environ-

ment by a rigorous mathematical formulation. But to describea control problem

within that environment, the system description is extended by the notion of utility

and its expected accumulative over time, making the similarity to the (PO)MDP

approach evident and obvious. Even the notion ofcost to gothat characterises

dynamic programming solutions is relevant both to (PO)MDPsand to classical

control theory.

Although the analytical properties of the system description allow control the-

ory to create strong tools to deal with system state uncertainty (e.g., filters such as

the Kalman filter and unscented transforms [111, 101, 39]), creating an optimal

control signal for the expected accumulated utility is computationally hard, and a

variety of assumptions and simplifications (e.g., linearity of the system dynamics,

CHAPTER 1. INTRODUCTION 5

a quadratic cost function) are made to make the process feasible.

It appears that among all the theories of planning and control a key ingredient

disappeared along the way from a narrative hunt story to the formal plan and con-

trol methodologies. It is the perspective of this thesis that the missing ingredient

is the focus on system or environment development dynamics.Even in classical

control theory, where the notion ofsystem dynamicsis utilised, it is the system

state (directly, or by the formulation of a utility function) that concerns the main

body of approaches to control, starting from PIDs and endingwith model follow-

ing. Yet, capturing and operating directly in terms of system dynamics is crucial.

This can be made evident by a simple example from the human vision system.

Consider a peculiar pattern on a dalmatian. Black, misshaped splashes on an

otherwise white coat are the trademark of this breed of dog. Such a dog would

usually stand out in our normal domestic environment. But assume for a moment

that the dog sits in front of a screen bearing just the same kind of black splash

pattern.2 Motionless, the dog blends into its background and virtually disappears.

However, once it starts to move we immediately spot it again.The variation,

the change, the motion of black splashes we see is the very thing that identifies

to us the presence of an entity and, most importantly, identifies the entity as a

dalmatian. This nifty trick can be performed by the human vision system because

it concentrates not on a momentary snapshot of the environment, but on the rules

that guide and describe thedevelopmentof the environment.

Our knowledge of how human vision analyses dynamic environments allows

us to create a great variety of visual effects applied and utilised by Computer

2This is, in fact, a simulation of how the dog would look through the colour-blind vision of

other animals (see Figure 1.1).

CHAPTER 1. INTRODUCTION 6

Figure 1.1: Running Dalmatian (photograph by R.C. James)

Graphics and the movie industry. Following the human ability to recognise mov-

ing splashes of colour as a dog, it is possible to create an impression of a dog

just by moving the spots, without the actual dog being present. Similarly, the mo-

tion of certain forms of image components can create an illusion of a 3D object

appearing on a 2D screen, and this fact is extensively used by3D animators.

This thesis adopts the intuition of the human visual system’s ability to concen-

trate on system development dynamics, resulting in a novel and effective frame-

work for continual planning and control: theDynamics Based Controlframework.

Chapter 2

Background and Related Work

“The only thing more reliable than magik is one’s friends!”

Macbeth

“There’s something to be said for relatives ...it has to be said because it’s unprintable!”

A. Einstein

(from R. Asprin epigraphs)

TheDynamics Based Control (DBC)framework and algorithms, which are the

contribution of this thesis, have been created to address several shortcomings of

available control and planning technologies in stochasticdynamic systems. We

therefore overview the technological background of this field in order to under-

stand the context and contributions of the DBC framework.

DBC is indeed a control framework, and as such uses a similar vocabulary

to that of classical control theory. Terms such assystem identificationandsys-

tem dynamicsare used in the control theory sense. However, the DBC algorithms

developed operate in a specific environment type—a discrete(time, state and ac-

tion space) Markovian environment, which makes it more convenient to borrow

7

CHAPTER 2. BACKGROUND AND RELATED WORK 8

some terms from another control and planning framework—Partially Observable

Markov Decision Problems (POMDPs). Terms such astransition functionand

system state distribution, though they retain their control theory meaning, were

utilised by the Extended Markov Tracking (EMT) based implementation of DBC

in their POMDP sense.

Both the general DBC framework and its EMT-based implementation contain

an estimation algorithm component. This component in some sense summarises

the environment’s response to the control sequence applied, and makes such ap-

proaches asmodel predictive controlandfictitious playrelevant background as

well.

In the sections that follow, the aforementioned approachesto a controlled in-

teraction with an environment are briefly summarised. The complete volume of

the background is so extensive that an exhaustive summary isvirtually impossible.

Therefore, we present only those elements which are deemed to assist the reader

in understanding this thesis’ contribution, the Dynamics Based Control frame-

work. During this exposition, we will occasionally intersperse comparisons of the

approaches being presented with the DBC approach.

2.1 Control Theory

Classical control theory [95, 21] has its mathematical apparatus rooted in physics.

The first mathematically described dynamic systems did not have an external con-

trol input, and developed over time at their own accord. Suchautonomicsystems

described the behaviour of a system according to the laws of physics: e.g., a

bouncing ball, motion of a pendulum. Quickly it became apparent that, as long as

CHAPTER 2. BACKGROUND AND RELATED WORK 9

we can imagine that a mathematical law stands behind the development of a sys-

tem, similar mathematical equations can describe the behaviour of non-physics

related systems as well, e.g., the hunter-prey balance.

It became possible to analyse a system’s behaviour, faults,and benefits. For

some of the systems their behaviour did not only depend on their principal com-

position, but also on the specific parameters of the principal components. The

simplest example would be perhaps the behaviour of a pendulum whose oscilla-

tion period depends (only) on its length. As many children quickly discover on a

swing, for a swing is a pendulum, this parameter dependency makes it possible to

vary the behaviour of the system—that is, to control it.

Control theory defines a system’s state as a vectorx(t) ∈ Rn where each co-

ordinate describes a single parameter of the system. A statevector is designed to

containsufficientdata to describe a momentary snapshot of the system at timet.

The system is then described by an equation of the formẋ = f [x,u, t], wheref is

thesystem dynamicsfunction andu ∈ Rm is the set of controlled parameters of

the system. Sinceu is a function of time, it is also referred to as acontrol signalor

control input. Once the control signal is fixed, so is the behaviour of the system:

the system takes the autonomic formẋ = f̂ [x, t], with its (autonomic) system dy-

namicŝf . Mathematical analysis of the system dynamics function candetermine

to what degree the system is controllable, that is, what kindof behaviours it is

possible to create.

A formal system description, however, does not pose a control problem by

itself. One needs to determine what behaviours, and to what degree those be-

haviours, are considered beneficial. To this end classical control theory makes a

crucial decision—it is the properties of the control signaland system state over

CHAPTER 2. BACKGROUND AND RELATED WORK 10

time that determine the benefit of any given behaviour. In other words, autility

(or cost) functionis defined of the form:

J = φ[x(tf), tf] +

tf
∫

t0

L[x(t),u(t), t]dt

The control problem is then to findu(t)
∣

∣

tf

t=t0
so as to minimise the costJ . The

solution to this problem is found by an application of the calculus of variations,

and the principle is readily demonstrated by the Brachistochrone problem.

���
���
���
���
���

���
���
���
���
���

A

B

y

x

Figure 2.1: Brachistochrone problem: make the bead slide down in the least time

possible.

The Brachistochrone problem can be formulated as follows: find the curve

down which a bead sliding without friction, starting from zero speed, and effected

by gravity alone, will slip in the least time possible (Figure 2.1). The problem

can be viewed as a standard control problem if one takes the speed of the bead

as constituting the system state, the curve function to be the control input, and

the cost function computing the time needed for the bead to traverse the curve.

Johann Bernoulli solved the problem, and then published it asa challenge to others

CHAPTER 2. BACKGROUND AND RELATED WORK 11

through Acta Eruditorum in June 1696. The challenge was accepted, and four

other solutions were sent in by Isaac Newton, Jakob Bernoulli, Gottfried Leibniz,

and Guillaume de l’Ĥopital.

The elegance of the continuous time solution nowadays givesway to the dis-

crete time system formulation, mostly due to digital implementations. It some-

what changes the mathematics, but the structure remains thesame: a system is

described by an equation of the formxn+1 = f(xn,un, n), wheren is the time

step of the system.

Both the continuous and the discrete time system formulations have been ex-

tended to include random perturbations. This is done by introducing a stochastic

processw(n), that encodes perturbations, into the system dynamics function and

the expected cost function (here given in a discrete time form):

J = E

(

φ[x(nf),w(nf), nf] +

nf
∑

n=n0

L[xn,un,wn, n]

)

It is assumed that the random perturbationw has some convenient properties:

• w is relatively small and additive:̇x = f [x,u, t] + L(t)w(t)

• w is a white-noise process:

– E[w(t)] = w̃ = 0

– E[w(t)w(t)T] = W(t)δ(t − τ), whereδ is that of Kroeneger.

Introducing stochasticity requires the notion of the system state to be aug-

mented. It can no longer be a deterministic (function) vector; instead, it too

becomes a random variable, and the system dynamics functiontransforms the

state’s distribution through time, governing the dynamicsof the overall stochastic

process.

CHAPTER 2. BACKGROUND AND RELATED WORK 12

But control theory does not stop at this, and continues to complicate the theo-

retical setup further by introducing the notion of observability of the system state.

This is modelled by introducing an observation vectory ∈ Rk, observation noise

processv, and the observation function, so that an observation at time n is given

by an equation of the formyn = h[xn,un,vn, n]. Given that only partial knowl-

edge about the system state is available, computing a control signal optimal with

respect to the defined cost function becomes even more complex, giving rise to

the concept offilters—mathematical and algorithmic constructs that allow effi-

cient recovery of the system state distribution based on theobservation data and

the system dynamics modelsf andh (see e.g., [111, 101, 39]).

Scarcity of proper information about the system state and the system’s stochas-

tic nature make control feedback a necessity; that is, the control signal is not pre-

computed in advance, but rather continually corrected and reshaped in aclosed

loop with its application, based on the most recent system measurements and es-

timations. In the scope of this thesis, the most interestingversion of this closed

loop is themodel-followingcontrol approach. Under the model following an ideal

system dynamics,f∗ is assumed to exist, and the system is controlled as a func-

tion of the error between the state space trajectory produced by the ideal and the

factual system responses.

The model-following approach is considered among the more robust and ef-

fective control methods, but interestingly it also underlines the main shortcom-

ing of classical control theory. At the origin of control theory, a utility function

was used to differentiate beneficial system behaviour, but in the case of model-

following the roles have been reversed—despite the fact that the optimal be-

haviour is defined, it is converted into a space state trajectory to fit a utility-based

CHAPTER 2. BACKGROUND AND RELATED WORK 13

solution concept.

Before we continue, it is important to underline this observation. Recalling the

control of a pendulum or a swing—varying the length of the pendulum changes

thedynamicsof the system, rather than the system’s state. The system continues

to develop over time, but the laws of this development change—this is what makes

swings fun for kids; they recreate a certaindynamicbehaviour, and consider reach-

ing thatdynamicsto be the optimality criteria. The same point of view is adopted

by the Dynamics Based Control framework, introduced in this thesis—it focuses

on the systemdynamics, and chooses a control signal guided by proximity to an

idealdynamics.

2.2 Partially Observable Markov Decision Problems

(POMDPs)

Markov Decision Processes and their partially observable variation have been

introduced to model a completely discrete controlled system with an intrinsic

stochastic property and limited memory. The model essentially sees the environ-

ment as a family of stationary stochastic processes with transition probabilities

parameterised by some action space, where the processes develop over a discrete

time-line. Formally, a Markovian Decision Process (or a Markovian environment)

is defined by a tuple< S,A, T, s0 >, where:

• S represents the set of all possible system (environment) states.

• s0 ∈ Π(S) determines the distribution from which the initial system state

(at time zero) is sampled.

CHAPTER 2. BACKGROUND AND RELATED WORK 14

• A represents the set of all possible actions applicable within the environ-

ment. At times a division of the setA is defined:As for all s ∈ S, since not

all actions are applicable in all possible system states.

• T : S × A → Π(S) is the transition function that describes the probability

distribution over the system states at the next time step given the current

time step’s system state, and the action applied.

In turn, Markov Decision Problems (MDPs) extend this environmental de-

scription by a utility (reward or cost) function,R : S × A × S → R, and an

optimality criteria1. The utility function is designed to describe preferences over

different controlled transitions of the environment from one state to another. The

optimality criteria states how this utility has to be treated over time. A solution to

a Markov Decision Problem (MDP) is then a policy of action selection based on

the environment’s observations that produces the best utility with respect to the

defined optimality criteria.

By far the most popular optimality criteria are the followingtwo:

• Expected discounted reward accumulation over the infinite time horizon:

Let rπ
i be a random variable denoting the utility obtained at timei under

action selection policyπ, and let0 < γ < 1. Then the optimal policy under

the criteria is

π∗ = arg max
π

E

(

∞
∑

i=0

γirπ
i

)

• Expected un-discounted reward accumulation over a finite time horizon:

Let rπ
i be a random variable denoting the utility obtained at timei under

1Note how this echoes classical control theory.

CHAPTER 2. BACKGROUND AND RELATED WORK 15

action selection policyπ, and letT > 0 be some finite time step at which

the system is stopped. Then the optimal policy under the criteria is

π∗ = arg max
π

E

(

T
∑

i=0

rπ
i

)

It has been shown that under the discounted reward criteria the optimal policy

has the form of a mapping from system states to actionsπ∗ : S → A, that is in

every system state there is a single optimal action. Furthermore the policy can be

recovered from the Bellman-Ford equation for the optimal value function.

V ∗(s) = max
a

∑

s′∈S

(R(s, a, s′) + γV ∗(s′)) T (s′|s, a).

The value functionV π : S → R expresses the expected reward that can be

obtained by applying a policy starting from any given systemstate. The expected

reward obtained by the policy is then the expectation of the value function with

respect to the initial state distributions0:
∑

s

s0(s)V
π(s), and the value function in

turn is maximised at all points by the optimal policy.

The duality between the value function and the applied policy give rise to

MDP solution algorithms, such aspolicy andvalue iteration. The value iteration

algorithm is adynamic programming[9, 6] solution of the problem that uses the

Bellman-Ford equation to backup the value:

• InitialiseV 0(s) to small random values.

• IterateV k+1(s) = max
a

∑

s′∈S

(

R(s, a, s′) + γV k(s′)
)

T (s′|s, a) until conver-

gence.

• Compute the policy by

π∗(s) = arg max
a

∑

s′∈S

(R(s, a, s′) + γV ∗(s′)) T (s′|s, a)

CHAPTER 2. BACKGROUND AND RELATED WORK 16

Policy iteration attempt to correct the policy directly during its iterations:

• Initialise policy to some random action selectionπ0.

• Iterate until convergence:

– Compute the value function that corresponds to the policyV k by solv-

ing the set of equations:

V k(s) =
∑

s′

(

R(s, πk(s), s′) + γV k(s′)
)

– Compute new policy

πk+1 = arg max
a

∑

s′∈S

(

R(s, a, s′) + γV k(s′)
)

T (s′|s, a)

This however assumes that the policy is computed under two major assump-

tions: first, the world’s model is known, and second, the policy is computed off-

line, away from its application. To amend these two limitations, “hands-on” learn-

ing methods were introduced, such as SARSA, TD-, and Q-learning [97, 103].

Learning algorithms move through the space of possible policies guided by re-

peated interactions with an environment, assuming only that the environment is

indeed Markovian with known state and action spaces, but without any knowl-

edge about the relationship of these two spaces. By their way of thinking, most

of these algorithms are close to the policy iteration algorithm, as the on-line ex-

perience can be seen as an empirical value function computation, followed by a

correction of the policy.

Reinforcement learning algorithms, other than expanding the range of do-

mains indirectly captured by MDPs, also expose a crucial weakness of the MDP

approach:indirect encoding of the behavioural preference by a reward function.

CHAPTER 2. BACKGROUND AND RELATED WORK 17

To force a reinforcement learning algorithm produce a system behaviour which

is considered proper, the reward function used by the algorithm has to carefully

designed (see e.g., [55, 65, 54]). Although Dynamics Based Control, presented

in this thesis, does assume the existence of an approximate environment model,

it works with system dynamics directly, circumventing the inconvenience of sec-

ondary preference encoding through a reward function.

Addressing the question of partial knowledge of the environment, MDP tech-

nology turned to domains where the system state is not completely known at all

times, since it is obscured and indirectly measured. This led to formulation of

Partially Observable MDPs (or POMDPs for short).

A POMDP environment is defined by an extended tuple< S,A, T, s0, O, Ω >,

whereS,A, T ands0 are as defined for an MDP, and the other two parameters are

as follows:

• O is the set of all possible observations (or state measurement values);

• Ω : S × A × S → Π(O) is the stochastic observability function, with

Ω(o|s, a, s′) determining the probability of an observation given that the

system state underwent a certain controlled transformation.

POMDPs have received even greater attention for their capability to model

more realistic domains that include sensory aliasing, including robotic applica-

tions (e.g., [86, 43]). Although it is possible to convert a POMDP into the MDP

form, resulting in a so calledbelief MDP, the transformation explodes the state

space to unmanageable proportions. Coupled with the fact that the optimal pol-

icy is no longer a simple mapping from states to actions (as itprovably was in

the completely observable case), it led to a series of approximation attempts and

CHAPTER 2. BACKGROUND AND RELATED WORK 18

theoretical research into the computational complexity ofthe Partially Observable

problem.

Ranging from heuristic to more rigorous analytical approaches, the vast mul-

titude [99, 58, 40, 26, 69, 28, 94, 1] of approximate solutions to POMDPs allows

one to handle larger and larger domains with greater efficiency. But the stern

answer of the equal multitude [50, 57, 12, 51, 34, 18, 67, 73, 52, 53] of com-

putational complexity analysis remains unforgiving: manytypes of POMDPs are

unsolvable or computationally hard and inapproximable.

Among the reasons for this austere complexity one can name the expectation

(or other averaging) of the reward found in the formulation of the optimality cri-

teria for (PO)MDPs. The Dynamics Based Control (DBC) framework removes

this limitation by dealing directly with system behaviour distributions, rather than

a single parameter of arduous computational effort. A similar trend, though pre-

ceded by DBC and rather less general than DBC, can be also found within a more

classical view of MDPs, as the following section demonstrates.

2.3 Targeted Trajectory Distribution Markov Deci-

sion Processes (TTD-MDPs)

In [82] an alternative view of the target of the control procedure within MDP envi-

ronments was introduced. Motivated by the need to establisha non-static response

from an interactive game [5, 104, 64], authors have looked toMDPs to capture

the necessary uncertainty both in user (gamer) actions and the desired system

response. The resulting model was termed the Targeted Trajectory Distribution

CHAPTER 2. BACKGROUND AND RELATED WORK 19

Markov Decision Processes (TTD-MDP) and encompasses the need for a con-

troller to create a distribution over the system trajectories, rather than maximise

the expected utility, to create an effect of a surprise so valued in the interactive

entertainment.

Formally a TTD-MDP is defined over a given MDProcess< S,A, T, s0 > by

a tuple< T , A, P, P (T) >, where:

• T is a set of trajectories of the underlying MDProcess,

• A is the set of actions inherited from the underlying MDProcess,

• P : T × A → Π(T) is the stochastic transition function between dif-

ferent trajectories, given that a certain action has been taken. P (T ′|T , a)

determines the probability that the trajectoryT ′ will be a successor of the

trajectoryT after the actiona ∈ A has been taken.

• P (T) denotes the desired distribution over the space of trajectories.

It is readily observed that the state space forms a tree, where each node is a

partial system trajectory, and edges are marked by a pair of an action and a one-

state extension to the trajectory. This structure allows the efficient computation

and representation of the TTD-MDP transition function, since only for one pair of

trajectoriest, t′ ∈ T the value ofP (t′|a, t) is non-zero. In fact, given thatt ∈ T

ends with states ∈ S of the underlying MDP, only fort′ = tas′ with s′ ∈ S

the transition probabilityP (t′|a, t) = T (s′|a, s) and can be non-zero. This means

that the policy of the formπ : T → Π(A), whereπ(a|t) defines the probability

of taking actiona ∈ A given that trajectoryt ∈ T has been traversed, completely

determines the policy dependent distribution,P π, over the space of trajectoriesT .

CHAPTER 2. BACKGROUND AND RELATED WORK 20

In [10, 82] several algorithms were provided to solve the problem of finding

a policy that will produce a distribution over the trajectories as close as possible

to the desired distributionP (T). Each algorithm measured the distance between

the policy induced distributionP π(T) and the ideal distributionP (T) differently,

ranging from thel1 vector norm to Kullback-Leibler distances.

Although TTD-MDP provides an answer to some of the immediateneeds of

gaming to create a controlled form of surprise [19], its composition has encoun-

tered another difficulty inherent in the standard treatmentof (PO)MDPs—because

the approach attempts to create a distribution over (partial) trajectories of the sys-

tem, the policy spans thecompletetree of all possible system developments, which

is exponential in the size of the state-action space of the underlying MDP. As a

result it is computationally hard to procure a good TTD-MDP policy. This could

be amended if the trajectory tree could be encoded succinctly, or the policy recre-

ated on-line in a continual planning manner [24]. Both of these amendments are

covered by the Dynamics Based Control (DBC) approach presented in this thesis.

However, DBC is not a mere extension of the TTD-MDP idea (whichit pre-

cedes). The TTD-MDP approach differs conceptually on several deeper aspects

from DBC and from the Extended Markov Tracking (EMT) instantiation of the

DBC framework. First of all, DBC assumes no specific type of modelling of the

environment, e.g., it would equally encompass a system modelled by a Markovian

process and by a Predictive State Representation (PSR) [93, 108, 106, 105, 107].

Furthermore, EMT, although it assumes a Markovian environment model, is for-

mulated over a domain with partial observability, rather than a complete one, as is

the case with TTD-MDP. Finally, and perhaps most importantly, the DBC frame-

work takes a crucial step towards encoding thedevelopmentof the distribution

CHAPTER 2. BACKGROUND AND RELATED WORK 21

over the system state, and operates in terms of the system dynamics. Thus DBC

explicitly represents thesourceof a distribution over different system trajecto-

ries. As a result, the task representation becomes a very versatile one, capable of

capturing not only static system structures, but dynamic ones as well.

2.4 Fictitious Play

The Fictitious Play game theory concept was introduced by Brown [17] to denote

an interleaved process of learning and estimation in an adversarial game. The

original idea behind it was that a player would imagine a gameunrolling against

a set of potential adversaries, and construct his strategy in accordance with this

fictitiousplay. However, the implementation this idea received reduced the imag-

ination to one step only: a player selects a best-response action to a set of adver-

saries whose strategies were previously estimated, the action is then applied, and

the estimates of the adversary policies are updated based onsensory information

(e.g., the actions taken by other players).

Although Fictitious Play has been interpreted within the framework of classi-

cal game theory, and projected into game theory ontology andstructural elements,

the concept itself is really much more general. Classically,this projection would

mean that the interaction between the players would be described by a multi-

dimensional utility function,u :
n
∏

i=1

Ai → Rn, mapping actions independently

selected by the players into a vector of rewards. That is, given that each player

selected his actionai ∈ Ai, then the utility would be

(u1, ..., un) = u = u(a1, ..., an) ∈ Rn,

CHAPTER 2. BACKGROUND AND RELATED WORK 22

and playeri would receive utilityui. This also assumes that there is no guarantee

of this interaction to repeat. A player can of course toss a coin or two, that is,

draw his actions from some distribution over his action space,pi ∈ Π(Ai); in that

case, it is common to compute theexpected utility2

(E(u1), ..., E(un)) = E(u) =
∑

~a∈ΠAi

u(~a)Πpi(ai).

In this setting, the best response means finding a distribution that would maximise

the player’s expected utility, and also reduces the Fictitious Play concept to the

estimation of the distribution over the actions used by other players.

This game theoretic approach suffers from the same weaknessas Markov De-

cision Problems—computing the average is hard, and insteadof dealing with the

action distributions of other agents directly, they are reduced to a single number,

an agent’sexpected utility, to characterise the environmental setting it faces.

It is interesting to notice, however, that the Fictitious Play conceptitself pre-

scribes no specific way to estimate the strategy of the other players, but only as-

sumes that a player has a mechanism to do so. Fictitious Play also states no

specific representation of the other players strategy, or what that strategy might

represent by itself. It even does not prescribe how to measure benefit of a re-

sponse to obtain the best one.

This means that one could define ‘best response’ differently, and still remain

within the framework of the Fictitious Play concept. For example, it is possible

to define ‘best response’ with respect to thedistributionof the player’s utility, as

opposed to theexpectation, e.g., by preferring distributions which are proportional

2Notice, once again, how averaging plays the role of a fallback wherever distributions are

considered—the same happened with Markov Decision Problems.

CHAPTER 2. BACKGROUND AND RELATED WORK 23

to eui, whereui is a utility value. If one relaxes the assumption of the non-repeated

game, one can even estimate and use a stronger concept, namely the change of the

utility distribution over time. That is, actions are chosenso that the distribution of

utility will vary in time in a certain way—e.g., converging to be proportional to

eui.

A structurally similar process lies at the base of Dynamics Based Control:

an estimator is determined to capture the system dynamics, and then a Fictitious

Play type of computation is used to predict the response of the system to different

actions, ultimately resulting in the action which is deemedto be best with respect

to correcting the system dynamics estimate.

However, the Fictitious Play concept had left its Game Theory cradle long

before Dynamics Based Control, and established itself in other fields. Since Fic-

titious Play is a concept of learning and adaptation, it naturally found its way into

the field of multi-agent learning, discussed in the next section.

2.5 Multi-agent learning

Partial observability and decentralised, thus differing,perceptions of the environ-

ment make it hard for a team of agents to learn to behave beneficially in an unfa-

miliar environment. Even though all the team members wish tohelp each other,

differences in their observations lead to dangerous mis-alignment, and a friend

becomes a foe. In this context, fictitious play estimates theresponse of other team

members and aligns the agent’s actions with the rest of the team.

Although this can be made easier by information exchange (see e.g. [98]),

in some cases the other team players are not even fully aware of the rest of the

CHAPTER 2. BACKGROUND AND RELATED WORK 24

team. For example, Sen et al. [89] show that mutually complementary strategies

can be learned by two agents so as to perform a block pushing task over a given

trajectorywithout sharing information, and, in fact, without mutual awareness.

This is because the variation of the system development dynamics introduced by

each agent could be overcome by the sensitivity (or actuallythe learning rate) of

the other agent’s learning procedure.

It is, however, the Game Theoretic framework, rather than the general Fic-

titious Play concept, which is of more frequent use in the multi-agent learning,

largely due to Littman’s contribution in [47]. In this paper, he takes the stan-

dard game theoretic point of view, but extends it by allowingthe game to have

an internal state which changes according to the action vector composed and ap-

plied by participating agent players. The resulting framework takes the form of an

MDProblem with the utility and transition functions being parameterised by two

action parameters, one for each agent within the modeled system. Furthermore

the utility function is assumed to represent azero-sum game—that is, one agent

treats the function as representing reward, and wishes to maximise it, while the

other sees it as cost, and seeks to minimise it. Under these assumptions, Littman

formulates a combined version of the Q-learning algorithm [103, 102] and the

MiniMax principle [66], resulting in a MiniMax-Q algorithm, in which both play-

ers dynamically change their response to one another, learning the best response,

and in some cases converging to an equilibrium, at which point no agent has an

incentive to change its policy any more (a so-calledNash Equilibrium). Later,

Hu and Wellman [37, 38] extended Littman’s approach to deal with general sum

games, where the utility function is unconstrained in its interpretation by the play-

ers. The algorithm was also formally pro general sum games, and was named the

CHAPTER 2. BACKGROUND AND RELATED WORK 25

Nash Q-Learningalgorithm.

It is important to notice that the concept of Nash equilibrium presumes so

much mistrust and enmity between participating agents thateach selects its ac-

tions independently from others. In the general case, whereaction selection is

probabilistic, it means that distributions over agent’s actions spaces are indepen-

dent. This, however, need not be the case.

In his book “The Evolution of Cooperation” [3], Axelrod amongother exam-

ples describes a peculiar behaviour in the trenches of the first World War. The

opposing sides being roughly of equal power adopted a strangely synchronised

behaviour. As if following a conductor’s baton, solders on both sides barricaded

themselves in bunkers, while the artillery shelled the other side relentlessly. . . and

then again, following that invisible magical wand, everybody emerged from their

cover to set up dinner plates and tea, completely secure thatthe other side does the

same. Though surreal, this shows that even in most brutal of games, the action of

players may becorrelated. That is, action selection distributions of participating

players aredependent, and the overall distribution over the joint action space my

not be decomposable. Furthermore, it is possible that the joint distribution can be

such that deviating from it will lead to utility reduction tothe deviating player—

if this situation occurs then the joint action selection distribution is acorrelated

equilibriumof the game.

Correlated equilibriumnaturally extends and subsumes the notion of Nash

equilibrium, and multi-agent learning algorithms have been developed that con-

verge to such equilibria. Littman [48] has noticed that the assumption about the

opponent in the game being friend or a foe is important both for convergence of

the learning procedure and for the type of equilibrium to which the procedure

CHAPTER 2. BACKGROUND AND RELATED WORK 26

converges. Greedwald and Hall [35] then generalised the approach even further,

introducing Correlated-Q-Learning (CE-Q) variations for general-sum games.

Correlated equilibrium is an important conceptual step, because action selec-

tion has a functional effect on the system response. Since the opponents’ action

selection is essentially parameterised by the player’s action selection, selected

action modulates the system response, which is adynamicconcept, though de-

generate relative to the generalsystem dynamics.

2.6 Multi-agent POMDPs

Fictitious Play can also be found in algorithms for distributed versions of POMD-

Problems, e.g., [59, 61]. However, before we discuss what role Fictitious Play has

there, we need to define what distributed POMDPs are. This section provides the

necessary definitions and discussion.

Multi-agent POMDPs are conceptually a straightforward extension of the MDP

idea to domains where the action space is factored by the multiple controllers that

activate different portions of the action space. However, there are several param-

eters that can be extended in more than one way, which leads toa multitude of

multi-agent POMDP models, rather than a single uniform extension. To quote the

call for papers for the Multiagent Sequential Decision Making (MSDM) work-

shop [56]: “... i.e., MMDP, Dec-MDP, Dec-POMDP, Dec-MDP-Com, MTDP,

COM-MTDP, R-MTDP, E-MTDP, I-POMDP, POSG, POIPSG, ND-POMDP, TI-

Dec-MDP ...”. Only two basic types will be presented here to demonstrate the

major trends of the sub-field: ND-POMDPs and Dec-POMDPs.

The environment of general case Dec-POMDPs are defined by thetuple:

CHAPTER 2. BACKGROUND AND RELATED WORK 27

< S,A = ×N
i=1Ai, T, {Oi}

N
i=1, {Ωi}

N
i=1 >, where

• S is the set of all possible system states.

• A = ×N
i=1Ai is the joint space of actions. Each(a1, ..., aN) = a ∈ A is

composed ofN elements, whereai ∈ Ai is set by agenti. Thus the system

containsN agents.

• T : S×A → Π(S) represents the stochastic transition function. Notice that

the transition depends on ajoint actiona ∈ A.

• Oi represents the observation space of agenti,

• Ωi : S × A × S → Π(Oi) is the stochastic observability function that

dictates the distribution of thei’th agent’s observations based on the system

transitioning from one state to another under thejoint action.

It is important to notice and underline that agents depend oneach other in two

points in the environment. First, system transition depends on the joint action

taken by the agents, which correlates their action selection processes. Second,

any agent’s observation depends on thejoint action as well, which means that

the agents’ actions can produce mutual interference on their respective sensory

activity.3

As is the case with MDProblems, the Dec-POMDProblem completes the envi-

ronment description with a utility function and an optimality criteria with respect

to that utility function:

3This is actually found in submersible vehicles, where sonarpitches, produced to help the

vehicles orient themselves, interfere with one another.

CHAPTER 2. BACKGROUND AND RELATED WORK 28

• R : S × A × S → R is the utility function (reward or cost) that depends

on the system transition that occurred under thejoint action taken by the

agents.

• The utility is usually accumulated for a limited timeT without discount,

or for an infinite time with a discount factorγ < 1, and agents are set to

maximise the expected value of this accumulation.

The policy,πi, followed by agenti, is guided by the sequence of observations

it received thus far, that isπi : O∗
i → Π(Ai). The joint policy is then simply the

multi-dimensional functionπ = (π1, ..., πN) : (×Oi)
∗ → Π(×Ai), with the con-

trol/planning task set to find the joint policy that satisfiesthe optimality criteria.

Notice that this echoes, if not mirrors, the Game Theory viewon mixed strategies

under the Nash equilibrium principle: independently applied, uncorrelated (other

than through the environment response), policies.

The result of this extension to MDPs is an extremely powerfulmodelling in-

strument. Unfortunately, the general case was proved to be NEXP-complete for an

exact solution [8], and then proved to be inapproximable [74, 73]. The inapprox-

imability result is based on an interactive proofs concept,where the system plays

the role of the proof verifier and the agents try to cheat it. Since the agents can

communicate only through the system, but not explicitly, and since the optimality

criteria strongly depends on agent correlation with respect to the system state tran-

sitions, agent observations, and the utility structure, itis very easy for a verifier

to catch agents cheating. Thus to resolve this complexity, either the optimality

criteria or the correlation between agents needs to be modified. The Dec-POMDP

literature focuses on modification of the inter-agent correlations, and spawns a va-

CHAPTER 2. BACKGROUND AND RELATED WORK 29

riety of limited models. These models have a significantly reduced computational

complexity, but unfortunately lose as much modelling power(see e.g., [90, 33]).

One has to notice the following trends of Dec-POMDPs, and in fact of most

of the POMDP-based multi-agent models:

• The policy of agent behaviour is precomputed off-line, and then is fixed

during execution. As a result, if the environment model is imprecise with

respect to the real world, the agents fail to cope with inconsistencies or to

utilise opportunities.

• In spite of the optimality criteria containing an average, the policy is com-

puted in the mind set of the worst-case scenario. That is, allpossible de-

viations with respect to the average are counteracted, in great similarity to

the way that MiniMax mixed strategies are computed. Nash, rather than the

correlated, equilibrium intuition guides these policies.

• The optimality criteria is considered an invariable, and universally correct,

measure with respect to the control task. As a result, the model components

will be modified, and agent dependencies untied, in an attempt to overcome

the computational complexity incurred, but not the optimality criteria or its

design principles.

Although, several works attempt to defy the aforementionedtrends, e.g., [61,

59, 84, 25, 32], they remain within the bounds of the originaloptimality criteria,

and thus retain the major computational complexity trend.

MiniMax and the Nash equilibrium mindset is not the only heritage of Game

Theory that crossed into use by the decentralised versions of POMDPs, and some

CHAPTER 2. BACKGROUND AND RELATED WORK 30

of them bear more positive charge. For instance, in ND-POMDPs [61], and in the

underlying JESP algorithm [59], the principle of Fictitious Play combines with the

distributed constraint satisfaction principles, and produces a distributed approach

to the joint policy computation.

In JESP [59] agents start with random policies and then each agent in turn

changes its policy to optimise utility, keeping other agentpolicies fixed. Notice

that this is exactly in accordance with the alternating Fictitious Play principle.4

For ND-POMDPs, it has been noticed that the correlation between agents induces

a graph structure, thus making it sufficient to take into account only changes in

the policy of the neighbouring agents with respect to that graph. This led to a

distributed version of the JESP algorithm, reminiscent of simultaneous update

Fictitious Play [61].

These works mark an important step towards an on-line, distributed solution to

control in multiagent Markovian environments. However, all these modifications,

even the most recent (e.g., [85])—the acknowledgement of the limited sphere of

interest and effect, the need for distributed and on-line update of the policy—fail

to cure the effect inflicted by the chosen (and preserved against all odds) opti-

mality criteria inherited from single agent MDPs and Game Theory. Practical

application of the distributed versions of POMDPs remains the matter of heuris-

tic and approximate solutions, fine-tuned for a specific application or experiment.

The theoretical inapproximability and complexity results[74, 73, 90, 33] loom

over these algorithms, for none, with the notable exceptionof single agent work

similar to [41, 40], provide a sound analysis of the approximation coefficient they

4The subtle difference between alternating and simultaneous Fictitious Play was noticed in, for

example, [7]

CHAPTER 2. BACKGROUND AND RELATED WORK 31

give.

Dynamics Based Control (DBC), the subject of this thesis, proposes a new

optimality criteria, justified both in terms of partial observability and knowledge,

and in terms of limited reasoning resources of an agent. In its limited form, spe-

cialised for Markovian domains, this results in an on-line flexible and adaptive

solution to the control problem both in single and multi-agent environments.

CHAPTER 2. BACKGROUND AND RELATED WORK 32

Chapter 3

The Dynamics Based Control (DBC)

Framework

“Everything flows, nothing stands still.”

“Nothing endures, but change.”

Heraclitus, 535-475BC

“The universe is change; our life is what our thoughts make it.”

Marcus Aurelius, 121-180AD

Before the details of Dynamics Based Control (DBC) are presented,we will

look to a real-life mechanism for inspiration: human vision, and specifically

motion-based separation. Motion-based separation allowsus to discern a moving

object otherwise perfectly camouflaged by its background. For instance, a quietly

sitting dalmatian dog in front of a black spotted backgroundwould be hard to find,

but once the dog moves, we immediately spot it. This happens because wede-

tect that a certain subset of black spots have a differentdynamicsthan the rest of

them. These dynamics distinguish that part of the vision field which is occupied

33

CHAPTER 3. THE DYNAMICS BASED CONTROL (DBC) FRAMEWORK34

by the dalmatian, and allow us to recognise it for what it is.

This dynamics recognition process can be, and in fact is, controlled. For ex-

ample, in a Computer Graphics (CG) exercise, by moving a set of coloured dots

on a two-dimensional screen, we can create a powerful impression of a three-

dimensional object, e.g., a rotating sphere.

3.1 DBC Components

Dynamics Based Control follows the same patterns as the CG exercise above.

Assume a controlled dynamic systemS (the set of coloured dots), a tracking or

a recognition algorithmL (human vision), and an ideal dynamicsτ ∗ (the rotating

sphere). The task of the controller would then be to feed intothe systemS a

sequence of actions, so that based on the output fromS the algorithmL will

reproduceτ ∗ or a close alternative.

However, since we would like to mathematically formulate this control prob-

lem, we do not deal with these components directly, but rather model them, and

base our decisions on these models:

• A model of the environmentS’

• The tracking/recognition algorithmL’

• The targetτ ∗, and other possible outcomes ofL.

Since we allow the control solution to err, but would like to restrict that error,

we also need to define a measure of proximity,d, between two different outcomes

of L.

CHAPTER 3. THE DYNAMICS BASED CONTROL (DBC) FRAMEWORK35

Given the mathematical formulation the control problem canbe defined as

following:

Definition 1 Given< S,L, τ ∗, d > as above, find a control method, based on the

mathematical model ofS, so that the algorithmL will recreate a dynamics model

closest toτ ∗.

3.1.1 A Note on Versatility of System Dynamics

It is important to underline the strength and versatility ofthe dynamics-based task

representation. As was noted in Section 2.1, the functionalrepresentation of sys-

tem dynamics are capable of capturing a wide variety of physical systems, or, in

fact, any system admitting an approximate mathematical description. Even with-

out knowing whether any specific behaviour can be induced within a system, or

what control signal would be required, a dynamics-based description allows an

explicit description of the desired system behaviour.

Furthermore, some tasks are inherently dynamic. For instance patrolling a

region (e.g., in a museum) requires complete coverage, but also requires stochas-

ticity to reduce predictability by a potential intruder. Aerial vehicle behaviours,

such as landing and acrobatic figures, can be comfortably described by an auto-

nomic dynamic system, but would take a significant design effort to be described

in terms of system state transition utilities.

The direct representation of the desired behaviour in the terms and mathe-

matical vocabulary of the overall system description support faster feasibility and

design cycles—a beneficial engineering outcome, utilised by the Dynamics Based

Control architecture described in the next section.

CHAPTER 3. THE DYNAMICS BASED CONTROL (DBC) FRAMEWORK36

3.2 DBC Architecture

The specification of Dynamics Based Control (DBC) can be broken into three

interacting levels: Environment Design Level, User Level,and Agent Level.

• Environment Design Levelis concerned with the formal specification and

modelling of the environment. For example, this level wouldspecify the

laws of physics within the system, and set its parameters, such as the gravi-

tation constant.

• User Level in turn relies on the environment model produced by Environ-

ment Design to specify the target system dynamics it wishes to observe.

The User Level also specifies the estimation or learning procedure for sys-

tem dynamics, and the measure of deviation. In a museum guardscenario,

these would correspond to a stochastic sweep schedule, and ameasure of

relative surprise between the specified and actual sweeping.

• Agent Level in turn combines the environment model from the Environ-

ment Design level, the dynamics estimation procedure, the deviation mea-

sure and the target dynamics specification from the User Level, to produce

a sequence of actions that create system dynamics as close aspossible to

the targeted specification.

As we are interested in the continual development of a stochastic system, such

as happens in classical control theory [95] and continual planning [24], as well as

in our example of museum sweeps, the question becomes how theAgent Level is

to treat the deviation measurements over time. To this end, we use a probability

CHAPTER 3. THE DYNAMICS BASED CONTROL (DBC) FRAMEWORK37

threshold—that is, we would like the Agent Level to maximisethe probability that

the deviation measure will remain below a certain threshold.

Specific action selection then depends on system formalisation. One possi-

bility would be to create a mixture of available system trends, much like that

which happens in Behaviour-Based Robotic architectures [2]. The other alterna-

tive would be to rely on the estimation procedure provided bythe User Level—to

utilise the Environment Design Level model of the environment to choose actions,

so as to manipulate the dynamics estimator into believing that a certain dynamics

has been achieved. Notice that this manipulation is not direct, but via the envi-

ronment. Thus, for strong-enough estimator algorithms, successful manipulation

would mean a successful simulation of the specified target dynamics (i.e., beyond

discerning via the available sensory input).

DBC levels can also have a back-flow of information (see Figure3.1). For

instance, the Agent Level could provide data about target dynamics feasibility,

allowing the User Level to modify the requirement, perhaps focusing on attain-

able features of system behaviour. Data would also be available about the system

response to different actions performed; combined with a dynamics estimator de-

fined by the User Level, this can provide an important tool forthe environment

model calibration at the Environment Design Level.

UserEnv. Design Agent

Model, S Estimator, L

Dynamics Feasibility

System Response Data

Ideal Dynamics

Estimator, L

,τ

Figure 3.1: Data flow of the DBC framework

CHAPTER 3. THE DYNAMICS BASED CONTROL (DBC) FRAMEWORK38

Extending upon the idea of Actor-Critic algorithms [44], DBC data flow can

provide a good basis for the design of a learning algorithm. For example, the User

Level can operate as an exploratory device for a learning algorithm, inferring an

ideal dynamics target from the environment model at hand that would expose

and verify most critical features of system behaviour. In this case, feasibility and

system response data from the Agent Level would provide key information for an

environment model update. In fact, the combination of feasibility and response

data can provide a basis for the application of strong learning algorithms such as

EM [11, 63].

3.3 Control and Planning Perspectives

A control solution is devised and performed by the DBC Agent level, and it is

that level upon which we will now concentrate. The task a DBC Agent faces

can be viewed both as a closed loop control [95] problem, and as a continual

planning [24] loop.

As Figure 3.2 shows, the closed loop control perspective is obvious: a DBC

Agent will apply an action to which the environment will respond and provide

an observation; the observation will be processed by the dynamics estimator, and

result in an update of the system dynamics estimate; the dynamics estimate in turn

will be compared to the reference of the ideal dynamics, and the control algorithm

will produce another action.

The control perspective requires an additional assumption, absent from the

general DBC framework. Dynamics estimates should not vary ina (strong) dis-

continuous fashion with respect to the action variation.

CHAPTER 3. THE DYNAMICS BASED CONTROL (DBC) FRAMEWORK39

Figure 3.2: DBC Agent as a control loop

This assumption, however, naturally occurs in many physical motion models,

and by itself would not constitute a major difference with DBC.The difference

lies in the data that flows through the loop. In a classical control loop, the system

state would be estimated and used as a basis for the control signal variation. In

DBC, on the other hand, it is the estimate ofsystem dynamicsthat is at the base

of the action selection procedure.

Yet, with a wide array of control methods available, it is hard to avoid an

attempt to resolve the DBC Agent problem using one of the classical methods.

The most tempting among them ismodel following, since it also has a dynamic

system as a reference.

3.3.1 The Model Following Perspective

Under the model following principle the system is controlled as a function of the

error between the ideal and actual responses. Since the DBC User level provides

the ideal dynamicsτ ∗, it may be possible to construct a model following controller

with τ ∗ as the reference. It then seems feasible that the environment will follow

τ ∗, thus forcing the estimation algorithmL to reconstructτ ∗. That is, model

following seems to be a trivial solution to DBC Agent control.

CHAPTER 3. THE DYNAMICS BASED CONTROL (DBC) FRAMEWORK40

However, there are two problems with such an approach. First, it may be much

easier to fool the estimation algorithmL than actually to control the environment.

For example, trivial frequency analysis of the sequence{H,T,H, T,H, T,H, T}

would suggest that a fair coin was used to create it, in spite of the fact that the

sequence is more likely to be of a deterministic origin.

Noise and stochasticity of the controlled environment provide the second rea-

son for model following to fail as a DBC solution. The algorithm L can deviate

away from itsτ ∗ estimate, and then never return to it, even if the environment

will strictly follow τ ∗ thereafter. Much stronger means may be necessary, as can

be seen from the example of the noisy prisoner’s dilemma [110]. A standard Tit-

for-tat strategy is thrown off-sync by noise, and a modification by generosity or

contrition is necessary.

The model following principle, however, does not have to concentrate on the

environment as its control subject. Instead, it is possibleto view the pair, formed

by the environment and the dynamics estimator, as the control subject. In this case,

one can argue that a DBC Agent would compute actions as a function of error

between the response of the environment-estimator pair andthe optimal dynamics

τ ∗. That is, one can see any DBC Agent as a form of model following.But in this

caseτ ∗ would need to be the response of anideal estimator, which it is not—τ ∗

is a constant reference.

This analysis of the model following principle’s failure with respect to the

DBC Agent control problem exposes an interesting parallel toanother control

principle: Perceptual Control.

CHAPTER 3. THE DYNAMICS BASED CONTROL (DBC) FRAMEWORK41

3.3.2 The Perceptual Control Perspective

Perceptual Control is a psychological theory of animal and human behaviour [71].

It debates the “mechanical” view that sees behaviour as a function of perceptions

received by an organism. Instead, Perceptual Control statesthat an organism’s

behaviour is a means to control its perceptions.

Since the dynamics estimation algorithmL can be seen as part of an agent’s

perception system, it follows that control decisions made by a DBC Agent are

directed at producing desired perceptions. In a sense it makes DBC a formal

engineering counterpart of Perceptual Control theory.

Still, if we would like to deal with systems where variation is not continuous,

or simply not metric, we may need to take the planning perspective.

Figure 3.3: DBC Agent as a continual planning loop

3.3.3 The Planning Perspective

To see DBC as a form of planning, one simply has to modify the data flow diagram

to that of Figure 3.3. Seen from the planning point of view, the dynamics estimator

becomes akin to plan recognition, answering the question: “what plan is in effect

to have caused the observed changes?”. In this situation, the DBC agent may need

to provide a sequence, rather than a single action, and the dynamics estimator may

CHAPTER 3. THE DYNAMICS BASED CONTROL (DBC) FRAMEWORK42

receive more than one observation at any given time.

The DBC Agent receives the reaction of the dynamics estimator, which pro-

vides both plan failure and opportunity information. Furthermore, the DBC Agent

has to utilise both failures and opportunities, otherwise it may fail to force the es-

timation algorithmL to recogniseτ ∗. As a result, the DBC Agent can be seen as

a continual planner [24].

Chapter 4

DBC for Markovian Environments

“Should old acquaintance be forgot...”

Count of Monte Cristo

“...and then the fun began”

N. Bonaparte

(from R. Asprin epigraphs)

Without reducing from the general power of DBC, an applicationof the frame-

work requires specification of a (type of a) mathematical model used to describe

the environment. In this section, DBC will be applied to domains described as

Partially Observable Markovian Environments. It is important to underline at

this point the connection and the distinction between DBC andthe Partially Ob-

servable Markov Decision Problems (POMDPs) discussed in Section 2.2. Both

POMDPs and the Markovian projection of DBC rely on the same mathematical

model of the environment: a Partially Observable MarkovianEnvironment—and

this is the connection between them. This is, however, the only common point.

DBC has an entirely different control task specification and optimality criteria.

43

CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 44

This, in fact, makes the difference so profound that, in spite of the environment

description being the same, the two approaches cannot be formally compared.

Given the assumption that the environment is mathematically modelled by a

Partially Observable Markovian Environment, DBC can be specified in a more

rigorous manner. In this case, the phases or levels of DBC can be seen as follows:

• Environment Design level is to specify a tuple< S,A, T,O, Ω, s0 >,

where:

– S is the set of all possible environment states;

– s0 is the initial state of the environment (which can also be viewed as

a distribution overS);

– A is the set of all possible actions applicable in the environment;

– T is the environment’s probabilistic transition function:

T : S × A → Π(S).

That is,T (s′|a, s) is the probability that the environment will move

from states to states′ under actiona;

– O is the set of all possible observations. This is what the sensor input

would look like for an outside observer;

– Ω is the observation probability function:

Ω : S × A × S → Π(O).

That is,Ω(o|s′, a, s) is the probability that one will observeo given

that the environment has moved from states to states′ under actiona.

CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 45

• User Level, in the case of a Markovian environment, operates on the set of

system dynamics described by a family of conditional probabilities

F = {τ : S × A → Π(S)}. Thus ideal or beneficial dynamics can be

described byτ ∗ ∈ F , and the recognition or tracking algorithm can be

represented as a functionL : O× (A×O)∗ → F ; that is, it maps sequences

of observations and actions performed so far into an estimate τ ∈ F of

system dynamics.

There are many possible variations available at the User Level to define

divergence between system dynamics; several of them are:

– trace distanceor L1 distance between two distributionsp andq

D(p(·), q(·)) =
1

2

∑

x

|p(x) − q(x)|

– Fidelity measure of distance

F (p(·), q(·)) =
∑

x

√

p(x)q(x)

– Kullback-Leibler divergence

DKL(p(·)‖q(·)) =
∑

x

p(x) log
p(x)

q(x)

Notice that the latter two are not actually metrics over the space of possible

distributions, but nevertheless have meaningful and important interpreta-

tions. For instance, Kullback-Leibler divergence is an important Informa-

tion Theory tool [22] that allows one to measure the “price” of encoding an

information source governed byq, while assuming that it is governed byp.

The User Level also defines the threshold of the dynamics deviation proba-

bility θ.

CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 46

• Agent Level is then faced with a problem of selecting a control signal func-

tion a∗ to satisfy a minimisation problem as follows:

a∗ = arg min
a

Pr(d(τa, τ
∗) > θ)

whered(τa, τ
∗) is a random variable describing deviation of the dynamics

estimateτa, created byL under control signala, from the ideal dynamicsτ ∗.

Implicit in this minimisation problem is thatL is manipulated via the en-

vironment, based on the environment model produced by the Environment

Design Level.

4.1 The Extended Markov Tracking (EMT) Solu-

tion

Extended Markov Tracking (EMT) is a specific form of system dynamics estima-

tion, and EMT-based control instantiates DBC in Markovian environments.

• Environment Designproduces a Markovian partially observable tuple

< S,A, T,O, Ω, s0 >

• User Levelof EMT-based control defines a limited-case target system dy-

namics independent of action:

F = {τ : S → Π(S)}.

It then utilises the Kullback-Leibler divergence measure to compose a mo-

mentary system dynamics estimator—the Extended Markov Tracking (EMT)

algorithm. The EMT algorithm keeps a system dynamics estimate τ t
EMT

CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 47

that is capable of explaining recent change in an auxiliary Bayesian sys-

tem state estimator frompt−1 to pt, and updates it conservatively using

Kullback-Leibler divergence. Sinceτ t
EMT andpt−1,t are respectively the

conditional and marginal probabilities over the system’s state space, “ex-

planation” simply means that

pt(s
′) =

∑

s

τ t
EMT (s′|s)pt−1(s),

and the dynamics estimate update is performed by solving a minimisation

problem:

τ t
EMT = H[pt, pt−1, τ

t−1
EMT]

= arg min
τ

DKL(τ × pt−1‖τ
t−1
EMT × pt−1)

s.t.

pt(s
′) =

∑

s

(τ × pt−1)(s
′, s)

pt−1(s) =
∑

s′

(τ × pt−1)(s
′, s)

• Agent Level in EMT-based control is suboptimal with respect to DBC

(though it remains within the DBC framework), performing greedy action

selection based on prediction of EMT’s reaction. The prediction is based

on the environment model provided by the Environment Designlevel, so

that if we denote byTa the environment’s transition function limited to ac-

tion a, andpt−1 is the auxiliary Bayesian system state estimator, then the

EMT-based control choice is described by

a∗ = arg min
a∈A

DKL(H[Ta × pt, pt, τ
t
EMT]‖τ ∗ × pt−1).

CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 48

4.1.1 Intuition and Mathematics of EMT

Extended Markov Tracking perceives the world as a homogeneous Markov

chain, and tries to recover the transition matrix that governs it. The algo-

rithm bases its incremental update on examples of two consecutive distri-

butions over the system state,pt−1, pt. EMT assumes that the second distri-

bution is obtained from the first one by an application of the true transition

matrix of the Markov chain it attempts to recover. However, since there is

a continuous subspace of matrices that would provide the same transition

effect for any two distribution vectors, a reference matrixis needed, and

EMT uses its previous estimate,τ t−1
EMT as such a reference. As a result, the

mathematical problem EMT faces is the recovery of a joint distribution with

given marginals, as is described in [45].

τ t
EMT = H[pt, pt−1, τ

t−1
EMT]

= arg min
τ

DKL(τ × pt−1‖τ
t−1
EMT × pt−1)

s.t.

pt(s
′) =

∑

s

(τ × pt−1)(s
′, s)

pt−1(s) =
∑

s′

(τ × pt−1)(s
′, s)

The mathematical program thus obtained is a convex optimisation problem

over a convex domain, and is solvable in polynomial time. Furthermore,

in [45], Kullback provides an iterative procedure, later termedthe iterative

proportional fitting, that provably [46, 45] converges to the solution.

CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 49

The following is then the finite precision adaptation of the algorithm to the

discrete Markov chain problem of EMT:

0. Initialisation:

– Set precisionǫ (e.g.,= 5 ∗ 10−5) andt = 0

– Set base matrix from corrected targetQt(i, j) = τ t−1
EMT pt−1(j)

1. Computetmp1(i) =
∑

j

Qt(i, j)

2. SetQt+ 1

2

(i, j) = pt(i)(tmp1(i))
−1Qt(i, j)

3. Computetmp2(j) =
∑

i

Qt+ 1

2

(i, j)

4. SetQt+1(i, j) = pt−1(j)(tmp2(j))
−1Qt+ 1

2

(i, j)

5. Set t=t+1

6. if ‖tmp1 − pt−1‖ + ‖tmp2 − pt‖ >= ǫ

– Goto 1

7. Setτ t
EMT (i|j) = Qt(i,j)

p(j)

4.1.2 The EMT-based Agent Level Control Algorithm

Given that the mathematical optimisation problem of EMT canbe solved

by the iterative algorithm above or other convex optimisation methods, the

overall DBC Agent Level algorithm is formalised as follows:

0. Initialise estimators:

– the system state estimatorp0(s) = s0 ∈ Π(S),

CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 50

– system dynamics estimator

τ 0
EMT (s̄|s) = prior(s̄|s)

Set time tot = 0.

1. Select actiona∗ to apply using the following computation:

– For each actiona ∈ A predict the future state distribution

p̄a
t+1 = Ta ∗ pt

– For each action, compute

Da = H(p̄a
t+1, pt, τ

t
EMT)

– Selecta∗ = arg min
a

〈DKL (Da‖r)〉pt

2. Apply the selected actiona∗ and receive an observationo ∈ O.

3. Computept+1 due to the Bayesian update.

4. Computeτ t+1
EMT = H(pt+1, pt, τ

t
EMT).

5. Sett := t + 1, goto 1.

To demonstrate how EMT-based control works, an aircraft carrier landing sce-

nario has been formalised as a Markovian environment and solved using an EMT-

based controller.

4.1.3 Validation Experiment: Aircraft Landing

Consider an airplane approaching the landing deck of an aircraft carrier (Fig-

ure 4.1). To land safely the airplane has to keep its angle of approach in a narrow

CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 51

corridor of about half a degree. However, the landing deck pitches up and down,

air streams are unstable, and the aircraft may be damaged; asa result, the ap-

proach angle constantly changes, and the airplane pilot hasto adjust the approach

constantly. To assist the pilot, a set of coloured lights is projected into the sky,

colour coding different angular sectors of approach.

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

REAPER

Figure 4.1: Landing Scenario for EMT control

This landing scenario can be easily modelled by a random walkover a linear

graph (Figure 4.2), and defines the following Markovian model {S,A, T,O, Ω, s0}:

• S is a (discrete) set of valid approach angles.

• A is a (discrete) set of adjustment actions taken by the pilot.In this ex-

periment, the setA = [1 : 2 ∗ Fmax + 1] was created to reflect the effort

exerted to increase or decrease the approach angle, where the Fmax param-

eter allowed finer granularity of the action space, as will beevident in the

transition function parametrisation.

• T : S×A → Π(S) is the stochastic transition function, that models random

landing deck pitch, and aircraft response. For any action,T (·|a, ·) repre-

sented ak-step simple random walk along the linear graph (see Figure 4.2).

CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 52

Each random step’s left, right, and stay probabilities werecomputed based

on the action applied.

Denote byp+ the probability to move right (increase the approach angle),

by p− the probability to move left (decrease the approach angle),and by

p the probability of the approach angle remaining the same. Then given

actiona ∈ [1 : 2 ∗Fmax + 1], these probabilities were computed as follows:

– Let p0 be the parameter that denotes the “natural” tendency of the air-

craft to maintain the angle of approach.

– Let F = a−Fmax−1
Fmax

, andα = F+1
2

. Thusα denotes the normalised

effect ofa ∈ A = [1 : 2 ∗ Fmax + 1].

– Thenp = p0 ∗ (1 − ‖F‖
2

), p− = α ∗ (1 − p), p+ = (1 − α) ∗ (1 − p).

• O is the set of all observations; in this case, it can be the colour of the light

beam through which the airplane is currently flying. In the experiment, the

set of observations was taken to be equivalent to that of the stateO = S.

• Ω : S × A × S → Π(O) is the observability function, which takes into

account, for example, light beam failures or colour variation due to weather

conditions. Several observability versions were experimented with, with

similar results:

– The immediate neighbourhood of the true state were equiprobable.

– The observations are distributed by a discrete Gaussian with the mean

being the true state.

– The discrete Gaussian was clamped to a limited neighbourhood of the

state, and the distribution renormalised.

CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 53

Ideally, given this model, the pilot would manage to counteract any deviation

from the ideal approach angle in one step, though, since the pilot is only hu-

man, some tolerance has to be admitted. Thus the ideal systemdynamics can be

expressed by the following:τ ∗(s′|s) =

1
Z

s′ = ideal

ǫ
Z

otherwise

, whereZ is a normali-

sation factor andǫ is the error tolerance.

Figure 4.2: Random walk model for the landing scenario.α denotes transition

probability change due to an action application.

If no forces were applied, the distribution over the system states (approach

angles) would be almost uniform. However, under the application of the EMT-

based controller a Gaussian-like distribution is obtained(Figure 4.3).

4.2 The Multi-Agent EMT Algorithm

Having observed that EMT-based control works in a single agent domain, and

noticing that the algorithm takes only polynomial time withrespect to the size

of the Markovian environment model, it becomes increasingly intriguing to see

whether it would be as effective in a multi-agent domain.

To test this, the environment model has to be modified to account for multiple

agents acting simultaneously. This is done by replacing thesingle action space

CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 54

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.05

0.1

0.15

0.2

0.25

Position along the path

P
ro

ba
bi

lit
y

Figure 4.3: Distribution of the approach angle under EMT controller application.

with a Cartesian product, where each term corresponds to the action set of some

agent. Observability functions are also augmented accordingly. Thus a tuple

< S, s0, A, T, {Oi}
n
i=1, {Ωi}

n
i=1 > describes a multiagent Markovian environment

where:

• S — the set of system states,s0 ∈ S is the initial system state;

• A = ×n
i=1Ai — whereAi is the set of actions applicable by the agenti;

• T : S × A1 × · · ·An → Π(S) — the system transition function;

• Oi — the set of possible observations for agenti;

• Ωi : S × A × S → Π(Oi) — the observation probability distribution for

agenti.

Noticing that each agent can still represent its beliefs about the system state

at time t by a probability distribution~pt ∈ Π(S), and system dynamics by a

conditional distributionτ : S×A → Π(S), EMT can be applied straightforwardly,

CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 55

but with one small correction. Every agent can compute the best joint action tuple

(a1, ..., an), but this will be the best choice only from the agent’s local point of

view, and he will only be able to apply his action element of the joint action tuple.

Thus the overall multiagent EMT algorithm performed by eachagent0 ≤ i ≤ n

is as follows:

0. Initialise estimators:

• the system state estimatorp0,i(s) = s0 ∈ Π(S),

• system dynamics estimator

τ 0
i (s̄|s) = prior(s̄|s)

Set time tot = 0.

1. Select actiona∗ ∈ A to apply using the following computation:

• For each actiona ∈ A predict the future state distribution

p̄a
t+1,i = Ta ∗ pt,i,

whereTa is the transition function limited to actiona;

• For each action, compute

Da = H(p̄a
t+1,i, pt,i, τ

t
i)

• Selecta∗ = arg min
a

〈DKL (Da‖τ
∗)〉pt,i

2. From the selected actionsa∗ = (a1, . . . , aN) apply actionai ∈ Ai, and

receive an observationoi ∈ Oi.

CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 56

3. Computept+1,i due to the Bayesian update.

4. Computeτ t+1
i = H(pt+1,i, pt,i, τ

t
i).

5. Sett := t + 1, goto 1.

4.2.1 Experiment: Springed Bar Balance

Consider a long bar resting with its ends on two equal springs,and two agents of

equal mass standing on the bar. Their task is to shift themselves around so that

the bar will be level, as shown in Figure 4.4. At each time stepof the system,

each agent has the choice of three actions: moving left one step, moving right one

step, or staying put. Every movement of an agent has a non-zero probability of

failing, and the probability is biased by the inclination ofthe bar. That is, an uphill

motion will have less probability of succeeding than if the bar were levelled, and

downhill motion will have more probability of succeeding than if the bar were

levelled. Notice that bar inclination depends on the current agent positions on

the bar, thus creating a correlation between the effects of the agent actions, and

provides implicit information transfer between the agents.

���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

Figure 4.4: Springed bar setting

Formally the system state is described by the positions of the two agents on

CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 57

the barS = [1 : dmax]
2, wheredmax is the length of the bar in “steps”, and

the initial state is an unbalanced ones0 = (1, dmax

2
+ 1). The action sets are

Ai = {left, stay, right}, and the transition probability is built according to the

physics of motion as follows:

• It is assumed that the agents are of the same mass, and the joint mass ism.

• The springs are assumed to have coefficientsk1 andk2, which are the pa-

rameters of the model.

• Given that the bar hasd = dmax − 1 units of length, the inclination of the

bar is computed

sin θ =
mg

d2

(

l2

k1

−
l1

k2

)

wherel1 andl2 are the relative shifts of the centre of mass with respect to the

first (leftmost) and second (rightmost) springs, andg is the standard gravity

coefficient.

• Let p ∈ [0, 1] be a parameter determining the general mobility of an agent.

Then the probabilities of successful right,p+, and left,p−, steps are com-

puted by:

p+ = 0.5 ∗ (1 − 2 ∗ p) ∗ sin2
t − 0.5 ∗ sint + p

p− = 0.5 ∗ (1 − 2 ∗ p) ∗ sin2
t + 0.5 ∗ sint + p

Two observation schemes are considered:

1. Oi = S = {all positions of the two agents}, Ω1 = Ω2 and creates uniform

noise over the immediate neighbourhood of the real joint position of the

agents.

CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 58

2. Oi = [1 : dmax] and represents the position of the observing agent.

Ωi creates a uniform noise over the immediate neighbourhood ofthe ob-

serving agent’s real position.

In the first observations scenario, agents converge to a symmetric position

around the ideal centre of mass (given that the springs and masses are equal, this

is the centre of the bar). An example run can be seen at Figure 4.6. Average

deviation with confidence bars is shown at Figure 4.5 (left).

10 20 30 40 50 60 70 80 90 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time Step

D
ev

ia
tio

n
−

co
nf

id
en

ce
 b

ar
 v

al
ue

 *
10

4

(a) Observational Scenario I

10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5

Time Step

D
ev

ia
tio

n

(b) Observational Scenario II

Figure 4.5: Multiagent Scenario: Deviation from the ideal centre of mass.

In the second observation scenario, where agents have only noisy observations

of their own position, an interesting form of behaviour is engendered. Agents

cannot step off the bar; any action that attempts to do so fails. Together with the

symmetric nature of the problem, this creates a Schelling focal point [88], where

each agent occupies the far end of the bar, thus balancing it.Agents’ positions in

the second observational scenario quickly converge to thisfocal point.

What’s even more interesting is the way they do so. The initialstate of the

system places one of the agents at the far end of the bar, whilethe other stands

CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 59

5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

Time step

P
os

iti
on

 o
n

th
e

ba
r

1≤
 p

os
 ≤

 d
m

ax
=

15

Agent 1
Agent 2
Center of Mass

Figure 4.6: Multiagent observational scenario I.

quite close to the middle. The intuitive way to move towards the focal point

position (two far ends of the bar) would be for the second agent to move away

from the centre, while the first agents stays put, especiallysince agents do not see

each other. Recall though that the bar would then be tilted, slowing the second

agent down. EMT Control compensates for that, and in many experiments moves

the first agent towards the middle of the bar, thus helping thesecond agent to reach

its destination; it then “recalls” the first agent to the original far end position. This

behaviour can be seen in the example run in Figure 4.7 (left).

However, because of observational noise, the first agent sometimes overshoots,

moving too far. EMT Control of the second agent detects that and moves the sec-

ond agent towards the centre of the bar, allowing the first agent to correct its mis-

take. At its extreme, this behaviour can cause “switching”,where agents switch

their relative position, passing one another at the centre as shown in Figure 4.7

(right). However, EMT Control agentsalways manage to balance the bar, as

shown by the statistical data in Figure 4.5 (right).

CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 60

5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

Time step

P
os

iti
on

 o
n

th
e

ba
r

1≤
 p

os
 ≤

 d
m

ax
=

15

Agent 1
Agent 2
Center of Mass

5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

Time step

P
os

iti
on

 o
n

th
e

ba
r

1≤
 p

os
 ≤

 d
m

ax
=

15

Agent 1
Agent 2
Center of Mass

Figure 4.7: ‘Helping’ (left) and ‘Switching’ (right) behaviours

4.3 Multi-Target EMT Algorithm

At times, there may be several behavioural preferences. Forexample, in the

case of multi-robot movement in formation, two preferenceson motion direction

exist—one dictated by formation keeping, the other by obstacle collision avoid-

ance. Successful formation navigation requires a robot to adhere to, and balance,

both of these behaviours. For EMT-based control, this wouldmean facing sev-

eral tactical targets{τ ∗
k}

K
k=1, and the question becomes how to merge and balance

them. A balancing mechanism can be applied to resolve this issue.

Note that EMT-based control, while selecting an action, creates a preference

vector over the set of actions based on their predicted performance with respect to

a given target. If these preference vectors are normalised,they can be combined

into a single unified preference. We thus replace the stage 1 of EMT-based control

(the action selection stage) by the following:

1. Given a set of tactical targets{τ ∗
k}

K
k=1, and their corresponding weights

w(k), select actiona∗ based on the following computations:

CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 61

• For each actiona ∈ A predict the future state distribution

p̄a
t+1 = Ta ∗ pt;

• For each action, compute

Da = H(p̄a
t+1, pt, τ

t)

• For eacha ∈ A andτ ∗
k tactical target, denote

V (a, k) = 〈DKL (Da‖τ
∗
k)〉pt

.

Let Vk(a) = 1
Zk

V (a, k), whereZk =
∑

a∈A

V (a, k) is a normalisation

factor.

• Selecta∗ = arg min
a

∑k

k=1 w(k)Vk(a).

The weight vector~w = (w1, ..., wK) allows the additional “tuning of impor-

tance” among tactical targets without the need to redesign the targets themselves.

This balancing method is also seamlessly integrated into the EMT-based control

flow of operation, and is compatible with its multi-agent extension. This compat-

ibility makes possible the following experiment.

4.3.1 Experiment: Multi-Target Bar Problem

To test the multi-target version of the EMT-based control algorithm, recall again

the Spring Bar multi-agent environment described in Section4.2.1 limited to only

one observation scenario: both agents receive independentnoisy observations

about their joint position. That is,Oi = S = {all positions of the two agents},

Ω1 = Ω2 and creates uniform noise over the immediate neighbourhoodof the real

joint position of agents.

CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 62

Two conflicting targets are set. One is to balance the springed bar, while the

other is to maintain a preset distance between themselves. Note that these targets

are not requirements of the system state, but of the laws governing its behaviour.

For instance, distance maintenance is expressed by a dynamics matrix, that shifts

any given state into one that possesses the correct distanceproperty, and EMT-

based control sets out to achieve this kind of constraint within the system.

50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

Time step

P
os

iti
on

 o
n

th
e

ba
r

1≤
 p

os
 ≤

 d
m

ax
=

15

Agent 1

Agent 2

Center of Mass

Figure 4.8: Example Run of Dual-Target Springed-Bar Problem

Although the two behavioural targets are compatible, that is, there exists a

position of agents on the bar that satisfies both, the targetsare indeed conflicting

and interfering. For example, assume that we want agents to be at a distance of

4 from each other. Denote by0 the coordinate line at the centre of the bar, and

assume that the system’s noisy response forced the agents into positions−2 and

+3. In this case, the balancing target can encourage the motionof the left agent

from −2 to −3 thus balancing the bar, but violating the distance constraint. On

the other hand, the distancing target could be satisfied by the same agent moving

right to−1, violating bar balancing even further.

Despite the constant conflict between the two targets, multiagent EMT-based

CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 63

control equipped with multi-target action selection managed to maintain both tar-

gets quite closely. Although relentless system noise caused fluctuations, as seen

from an example run at Figure 4.8, these fluctuations occurred around the only

common position that satisfies the demands of both targets. In fact, the mean

values of distance between agents and the position of the centre of mass almost

perfectly matches the ideal, as can be seen from the value distributions in Fig-

ure 4.9 (left graph), which in this experiment would be 4 and 8respectively.

2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Value

P
ro

ba
bi

lit
y

Distance
Center of mass

2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Value

P
ro

ba
bi

lit
y

Distance
Center of mass

Figure 4.9: (Fitted normal) Distribution of distance and centre of mass in dual-

target springed-bar problem with (0.2, 0.8) (left) and (0.4, 0.6) (right) balancing

Using the bar setting, multiple balancing vectors have beentested. For ex-

ample, the distribution in Figure 4.9 was obtained from the weight vector~w =

(0.2, 0.8), that is, setting the balancing target at0.2 and the distancing target at

0.8. Changing the weight vector to be~w = (0.4, 0.6) exposes an interesting

property of multi-target EMT-based control. Since the targets were weakly com-

patible, the algorithm maintained both targets with the newbalancing vector, as it

did with the old one. The difference occurred when the control algorithm had to

correct system behaviour in response to noise—the algorithm was more ready to

CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 64

briefly deviate from the distancing target than the balancing one, as shown by the

distributions in Figure 4.9 (right graph).

However, as the weight of the the balancing target increased, not only the vari-

ance of the distance between the agents changed, but also themean. EMT-based

control began to lean strongly towards the balancing target, almost abandoning

the distancing target. This can be seen clearly from Figure 4.10, which depicts

changes of the distance and centre of mass distributions mean, as a function of

weight of the target.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
3

4

5

6

7

8

9

Weight of bar balancing

M
ea

n
va

lu
e

Distance
Center of mass

Figure 4.10: Means of distributions with respect to the weight of the balancing

target. Error bars depict variance.

Note that the balancing target had a very strong presence at the weight0.4,

as expressed by the mean and variance of the centre of mass distribution. On

the other hand, the distancing target at the weight of0.4 had much less attention

from EMT-based control. This inequality in attention to targets with respect to

symmetric weight vectors has been contributed to the varying strengthof pref-

erence expressed by the targets. Due to their construction,the balancing target

included preferential differences of dozens of orders of magnitude over different

CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 65

transitions, while the distancing target featured preference differences of only 2–4

orders of magnitude.

As a result, any change in system dynamics had much higher impact with re-

spect to the balancing behavioural preference, which thus had a stronger effect on

proper system behaviour. The distance tactical target was very mild in compari-

son, and thus had less influence on action choices.

4.3.2 Experiment: EMT Playing Tag

Multiple targets can also play the role of “basic behaviours”, such as those found

in the Behaviour Based Robotics paradigm [2]. In this case, the single-agent EMT-

based control algorithm plays the role of a behaviour selector and mixer, as is

demonstrated by the following experiment using the Game of Tag.

The Game of Tag was first introduced in [70]. It is a single agent problem

of capturing a quarry, and belongs to the class of area sweeping problems. An

example domain is shown in Figure 4.11.

0 51 2 3 4 6

7 8 10 12 13

161514

17 18 19

2221

23

9 11Q A

20

Figure 4.11: Tag domain; an agent (A) attempts to seek and capture a quarry (Q)

The Game of Tag severely limits the agent’s perception, so that the agent is

CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 66

able to detect the quarry only if they are co-located in the same cell of the grid

world, in which case the game ends. Both the agent and its quarry have the same

motion capability, which allows them to move in four directions, North, South,

East, and West. These form a formal space of actions within a Markovian envi-

ronment.

The state space of the formal Markovian environment is described by the

cross-product of the agent and quarry’s positions. For Figure 4.11, it would be

S = {s0, ..., s23} × {s0, ..., s23}.

The effects of an action taken by the agent are deterministic, but the environ-

ment in general has a stochastic response due to the motion ofthe quarry. With

probability q0
1 it stays put, and with probability1 − q0 it moves to an adjacent

cell further away from the agent. So for the instance shown inFigure 4.11 and

q0 = 0.1:

P (Q = s9|Q = s9, A = s11) = 0.1

P (Q = s2|Q = s9, A = s11) = 0.3

P (Q = s8|Q = s9, A = s11) = 0.3

P (Q = s14|Q = s9, A = s11) = 0.3

Although the evasive behaviour of the quarry is known to the agent, the quarry’s

position is not. The only sensory information available to the agent is its own lo-

cation.

For the Game of Tag, one can easily formulate three major trends: catching

the quarry, staying mobile, and stalking the quarry. This results in the following

1The experimental data was obtained withq0 = 0.2.

CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 67

three target dynamics:

Tcatch(At+1 = si|Qt = sj, At = sa) ∝

1 si = sj

0 otherwise

Tmobile(At+1 = si|Qt = so, At = sj) ∝

0 si = sj

1 otherwise

Tstalk(At+1 = si|Qt = so, At = sj) ∝
1

dist(si,so)

Note that none of the above targets are directly achievable;for instance, if

Qt = s9 andAt = s11, there is no action that can move the agent toAt+1 = s9 as

required by theTcatch target dynamics.

Three configurations of the domain shown in Figure 4.12 were used to test

EMT performance in the Tag Game, each posing a different challenge to the agent

due to partial observability. In each setting, a set of 1000 runs was performed with

a time limit of 100 steps. In every run, the initial position of both the agent and its

quarry was selected at random; this means that as far as the agent was concerned,

the quarry’s initial position was uniformly distributed over the entire domain cell

space.

Two variations of the environment observability function were used. In the

first version, an observability function mapped all joint positions of hunter and

quarry into the position of the hunter as an observation. In the second, only

those joint positions in which hunter and quarry occupied different locations were

mapped into the hunter’s location. The second version in fact utilised and ex-

pressed the fact that once hunter and quarry occupy the same cell, the game ends.

The results of these experiments are shown in Table 4.1. Balancing the catch,

CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 68

A
Q

(a) Multiple Dead-end

Q A

0 1 2 3 4

5 6 7 8 9

10 11 12

13 14 15

16 17 18

(b) Irregular Open Arena

A
Q

(c) Circular Corridor

Figure 4.12: These configurations of the Tag Game space were used

move, and stalk target dynamics described earlier by the weight vector[0.8, 0.1, 0.1],

EMT produced stable performance in all three domains.

Table 4.1: Performance of the EMT-based solution in three Tag Game domains

and two observability models.

Model Domain Capture% E(Steps)

I Dead-ends 100 14.8

omniposition Arena 80.2 42.4

quarry Circle 91.4 34.6

II Dead-ends 100 13.2

quarry is not Arena 96.8 28.67

at hunter’s position Circle 94.4 31.63

The behaviour cell frequency entropy, empirically measured from trial data,

was also recorded. As Figure 4.13 and Figure 4.14 show, empirical entropy grows

with the length of interaction. For runs where the quarry wasnot captured immedi-

CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 69

ately, the entropy reaches between 0.85 and 0.952 for different runs and scenarios.

As the agent actively seeks the quarry, the entropy never reaches its maximum.

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Steps

E
nt

ro
py

Dead−ends

(a) Multiple Dead-end

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Steps

E
nt

ro
py

Arena

(b) Irregular Open Arena

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Steps

E
nt

ro
py

Circle

(c) Circular Corridor

Figure 4.13: Observation Model I: Omniposition quarry. Entropy development

with length of Tag Game.

2Entropy was calculated usinglog base equal to the number of possible locations within the

domain; this properly scales entropy expression into the range[0, 1] for all domains.

CHAPTER 4. DBC FOR MARKOVIAN ENVIRONMENTS 70

0 10 20 30 40 50 60
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Steps

E
nt

ro
py

Dead−ends

(a) Multiple Dead-end

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Steps

E
nt

ro
py

Arena

(b) Irregular Open Arena

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Steps

E
nt

ro
py

Circle

(c) Circular Corridor

Figure 4.14: Observation Model II: quarry not observed at hunter’s position. En-

tropy development with length of Tag Game.

Chapter 5

Empirical Stability of EMT-based

Control

“Only constant and conscientious practise in the Martial Arts will ensure a long and

happy life”

B. Lee

(from R. Asprin epigraphs)

5.1 EMT Resistance to Model Incoherence

It must be noted that in all previously described experiments, the controlled system

was simulated exactly as the mathematical model of the environment prescribed.

However, to apply a control method in the real world one has toaccount for the

possibility that the environment model will not be precisely correct. In this chap-

ter, rather than once more modifying the algorithm, the performance of the basic

EMT-based controller, and the data it provides, are scrutinised. To test how EMT

71

CHAPTER 5. EMPIRICAL STABILITY OF EMT-BASED CONTROL 72

would cope with an incoherent environment model, a simple robot-following sce-

nario was simulated within the Player/Stage simulation environment [31].

Robot Green is given the task of following Robot Red at a preset distance. To

achieve this task, two independent EMT controllers,EMTC1 andEMTC2, were

applied to linear and rotation speed modulation of a single (simulated) Pioneer-

2X robot (Robot Green). The sensory information was receivedthrough ablob

finder—an on-robot camera with basic image analysis that makes possible the de-

tection of colour blobs within the picture. Camera information was approximately

mapped onto the observation sets: colour blob relative areaand centring within

the picture. Thus, the observation distributions providedstate meanings of linear

distance forEMTC1, and angular distance forEMTC2.

Both controllers used the environment model originally composed for the air-

craft landing scenario, since both keeping visual angle andlinear distance adhere

to the same balancing logic. The aircraft-landing model of cause was not entirely

coherent with the real-world behaviour of the visual angle and distance to Robot

Red.

Incoherence with the real-world transitions, and also interdependence between

the visual angle and linear distance, influenced the EMT Controller’s performance;

however, it was still able to successfully perform the tracking task. A sample run

of the EMT-controlled robot can be seen in Figure 5.1, depicting three positions

of the robots at different times. In this run, Robot Red performed a constant loop,

and the EMT-controlled Robot Green that followed it managed to capture this

motion. Robot Greed traced a smaller loop, concentric with the one traced by

Robot Red. However, due to action model incoherence, Robot Green did not per-

form optimally and reacted to the change in Robot Red’s position with insufficient

CHAPTER 5. EMPIRICAL STABILITY OF EMT-BASED CONTROL 73

correcting actions.

Figure 5.1: Target Following with a Weakly Coherent Model

5.2 EMT-Based Action Model Calibration

Although EMT robot control suffers from an inaccurate action model, EMT can

also provide a remedy to the model—calibration. The simplest way to calibrate a

model would be to accumulate data on state transitions and build an action model

from statistics. Though exact system state knowledge is unavailable, EMT can

still estimate the transitions based on the partial information. Then, EMT-based

action model calibration becomes a matter of data accumulation and statistics:

0. Assume a Markovian environment model< S,A, T,O, Ω, s0 > to be cali-

brated. For each actiona ∈ A let:

CHAPTER 5. EMPIRICAL STABILITY OF EMT-BASED CONTROL 74

• t̄a be the accumulator of the EMT dynamics estimators, initialised

t̄a = Ta.

• Na the counter, initialisedNa = 1.

Set timet = 0

1. Select and perform an actiona ∈ A.

2. Assume that system state beliefs changed fromp ∈ Π(S) to p̄ ∈ Π(S).

3. Using the EMT procedure, obtain an explanationD = H(p̄, p, Prior).

4. Let t̄a := t̄a + D, Na := Na + 1 andt := t + 1

5. If t ≥ tcalibration

• For alla ∈ A let Ta = 1
Na

t̄a

else goto 1

5.2.1 Calibrated Target Following

The EMTC1 controller, responsible for linear speed modulation in therobot-

follows-robot experiment, was calibrated for astationaryRobot Red, and the re-

sulting environment model was then used in tracking a movingtarget. During the

calibration, the robot alternately walked to and from the target, switching direc-

tion if the target became point-like (went too far away), or if the target effectively

blocked the camera view (went too close). This procedure is essentially as in [96],

with variation of the stopping criteria.

CHAPTER 5. EMPIRICAL STABILITY OF EMT-BASED CONTROL 75

Figure 5.2: Target Following with a Calibrated Model

Even without the calibration of the angular controller, theability of the system

to follow a moving object was greatly improved. This can be seen in the example

(Figure 5.2) of Robot Red moving circularly. Robot Green has almost completely

matched the speed and trajectory of Robot Red. In fact, Robot Green cannot

simply choose to move at the same speed as Robot Red; that speed is not available

in the action set. Instead, Robot Green exhibits more sophisticated behaviour,

it alternates appropriately between two speeds that bracket Robot Red’s speed,

matching the latter on average. The distance between the robots was still greater

than required, but it is hypothesised that this is explainedby residual incoherence

of the internal model (since calibration occurred for a stationary object and only

one controller model).

CHAPTER 5. EMPIRICAL STABILITY OF EMT-BASED CONTROL 76

Chapter 6

A Short Remark on the Technical

Limitations of EMT-based Control

EMT-based control is a sub-optimal (in the DBC sense) representative of the DBC

structure. It limits the User by forcing EMT to be its dynamictracking algorithm,

and replaces Agent optimisation by greedy action selection. This kind of combi-

nation, however, is common for on-line algorithms. Although further development

of EMT-based controllers is necessary, evidence so far suggests that even the sim-

plest form of the algorithm possesses a great deal of power, and displays trends

that are optimal in the DBC sense of the word.

There are two further, EMT-specific, limitations to EMT-based control that are

evident at this point.

The first limitation is the problem of negative preference. In the POMDP

framework for example, this is captured simply, through theappearance of values

with different signs within the reward structure. For EMT-based control, how-

ever, negative preference means that one would like toavoida certain distribution

77

CHAPTER 6. TECHNICAL LIMITATIONS OF EMT-BASED CONTROL 78

over system development sequences; EMT-based control, however, concentrates

on getting ascloseas possible to a distribution. Avoidance is thus unnatural in

native EMT-based control.

The second limitation comes from the fact that standard environment mod-

elling can createpure sensory actions—actions that do not change the state of

the world, and differ only in the way observations are received and the quality of

observations received. Since the world state does not change, EMT-based control

would not be able to differentiate between different sensory actions.

Notice that both of these limitations of EMT-based control are absent from

the general DBC framework, since it may have a tracking algorithm capable of

considering pure sensory actions and, unlike Kullback-Leibler divergence, a dis-

tribution deviation measure that is capable of dealing withnegative preference.

Chapter 7

Summary and Future Work

“All’s well that ends well”

E. A. Poe

(from R. Asprin epigraphs)

7.1 Discussion and Summary

The Dynamics Based Control (DBC) framework, introduced by this thesis in Sec-

tion 3, is directed at bringing together the concepts of perceptual control and dy-

namic systems. Perceptual control brings into the framework the idea that the task

of the controller is concentrated on the sensory system, rather than on the true

environment situation. DBC thus states that the control taskis to enforce a certain

output of the sensory system, which can be affected only indirectly through an

uncertain and stochastic environment. The second crucial contribution of DBC

is restating the sensory system of an agent as a system (dynamics) identification

tool. That is, a sensory system does not concentrate on recovering an environ-

79

CHAPTER 7. SUMMARY AND FUTURE WORK 80

ment’s momentary state, but rather on identification of the environment by the

dynamics that govern the change within the state.

Concentration on the sensory system as the subject for control is essentially a

recognition by the agent of its sensory limitations, which it does not try to over-

come, but rather embraces those limitations to simplify thetask at hand. As the

sensory system limits the agent’s ability to decipher the world, it makes little sense

to attempt to invest more effort into controlling the agent’s surroundings than can

actually be detected. Thus the Dynamics Based Control (DBC) framework, fol-

lowing the perceptual control principle, dictates us to design an agent’s behaviour

not to explicitly enforce preferred environment circumstances, but rather to create

conditions within the environment that would be recognisedby the sensory sys-

tem as the complete preferred circumstances. This would result in completion of

the control task to the extent that can be detected, while economising on the effort

to create refinements to the control task, which would not be detected even if they

do take place.

DBC models the sensory system as a system dynamics estimationalgorithm,

and imposes several mild assumptions on the algorithm. First, the algorithm’s

decision has to be mutable, in the sense that it will readily modify its estimate of

the system dynamics given new data. For example an infinite memory frequency

statistics would not be usable, as it requires larger and larger amounts of data to

modify its estimate. The second assumption is that the algorithm converges or at

least exhibits convergent properties for a stable system. That is, given complete

observations of a non-perturbed dynamic system, the algorithm produces a good

estimate of that system dynamic identity. This means that a single observation

estimate without memory of the past is also unlikely to be of use within the DBC

CHAPTER 7. SUMMARY AND FUTURE WORK 81

framework.

Dynamics Based Control, as a framework, does not assume any limitation on

the environment in which an agent is situated. However, oncean implementation

for a specific class of environments is required, DBC adopts necessary assump-

tions from that class of domains. In this thesis, DBC has been adapted for Marko-

vian discrete time and state space environments with partial observability. Taking

into account the properties of Markovian environments, such as dependency of

the environment development on a finite history of its state and a finite history of

the agent’s actions, Markovian class-specific definitions of the DBC components

have been constructed (Section 4).

Given the DBC adaptation to the Markovian class environments, a system dy-

namics estimation algorithm was constructed—Extended Markov Tracking (EMT)

(Section 4.1). EMT bases its estimate on two system state distributions vectors,

representing a single environment modification, and a previous dynamics esti-

mate. EMT thus performs a conservative update, producing a new dynamics esti-

mate that explains away the change in the system state distribution, while remain-

ing as close as possible to the previous estimate.

Extended Markov Tracking relies on an optimisation procedure first stated

in [45]. Its analysis, together with the fact that Kullback-Leibler divergence is

dual to likelihood, means that EMT tends towards a more likely explanation of

the observed change, with respect to the old dynamics estimate as a reference

point. Furthermore, properties of the EMT minimisation procedure suggest that

for a constant underlying dynamics, a sequence of EMT updates weakly converges

to that dynamics or its dynamic limit.

EMT has been applied as the estimator algorithm base for a greedy approxi-

CHAPTER 7. SUMMARY AND FUTURE WORK 82

mation to the DBC framework in Section 4.1.2. EMT-based control utilises EMT

to predict the effects of an action, and greedily selects an action that would bring

the EMT estimate closest to the specified ideal system development. The resulting

overall control scheme, in spite of being only an approximation, implements all

basic elements and properties of the DBC framework. Since EMT-based control

prefers actions that produce dynamics which are closer (more likely with respect

to) the specified ideal dynamics,τ ∗, the sequence of EMT updates over the con-

trolled system is forced towardsτ ∗ as well, and potentially converges to it.

An important positive aspect of EMT-based control is that the EMT optimisa-

tion procedure at its base is time polynomial in the size of the discrete environ-

ment model it uses. The same is true for the multi-target and multi-agent cases,

introduced in Sections 4.2 and 4.3, where the procedure remains polynomial in all

parameters except the number of agents in the system.

One has to take notice that EMT-based control does not provide the EMT

algorithm with the true system state transition data. Instead, the EMT algorithm

is provided with the sequence of system state beliefs. This means that an EMT-

based controller does not only rely on EMT to identify the system dynamics, but

also serves as a filter, discarding noise from the dynamic system representation.

This noise, in fact, need not come from sensory noise; instead, it can be a result

of interference by another agent within the system.

The Multiagent EMT-based control version, introduced in Section 4.2, pre-

scribes that each agent scan the joint action space, and perform its respective el-

ement of the optimal action tuple. If the environment correlates the agents, and

the effect of the joint multi-agent activity is (partially)observable, then it is con-

jectured that estimating system dynamics creates an implicit information transfer

CHAPTER 7. SUMMARY AND FUTURE WORK 83

between the agents, and facilitates coordination. This conjecture is supported by

a successful application of the multiagent EMT-based controller in a multiagent

balancing scenario (Section 4.2.1).

EMT-based control also has a multi-target version, presented in Section 4.3,

where the control task cannot be described by a single ideal system dynamics.

Instead, echoing the principles of Behaviour Based Robotics [2], the desired sys-

tem dynamics are formulated as a set of heuristic behaviour types that need to

be interleaved, combined, and fused together to achieve thedesired performance.

The target fusion is achieved by creating preference vectors over the action space

with respect to each target, and then linearly combining them with respect to

some specified weight factors. Sections 4.3.1 and 4.3.2 present experimental data

demonstrating that EMT-based action preference data can besuccessfully used to

fuse distinct, and weakly conflicting, targets.

Looking back at the data flow of the DBC framework presented in Figure 3.1,

and repeated below, Section 4.3 experiments have, in fact, also confirmed that it

would be possible to use EMT-produced data at the User Level to augment and

redesign the target system dynamics. Further following back-flow of data within

the DBC framework, Section 5 examined the effects of faulty world modelling

at the Environment Design level. EMT-based control is applied in a simulated

robotic domain with an incoherent world model, and exhibitsresistance to this

incoherence. By calibration scheme construction, Section 5.2 demonstrated that

EMT data procured at the Agent Level can be also effective forenvironment model

calibration.

CHAPTER 7. SUMMARY AND FUTURE WORK 84

UserEnv. Design Agent

Model, S Estimator, L

Dynamics Feasibility

System Response Data

Ideal Dynamics

Estimator, L

,τ

Figure 7.1: Data flow of the DBC framework

7.2 Conclusions and Future Work

The Dynamics Based Control (DBC) Framework concentrates on achieving sys-

tem dynamics, rather than a specific state or a sequence of states deemed optimal

with respect to some optimality criteria. It operates with respect to a given dynam-

ics estimator, and if the estimator is efficient enough, the controlled environment

itself is forced to undergo an appropriate controlled variation as well. The philo-

sophical foundation behind DBC is dictated by the perceptualcontrol principle,

and allows the control scheme to be efficient with respect to the efforts it invests

to achieve adetectabledegree of task completion.

Though it is still future work to develop a general control solution for DBC,

the control solution based on the Extended Markov Tracking (EMT) estimator

provides a good approximation with promising theoretical,computational, and

practical trends. EMT-based variations to multiple correlated tasks and multiple

agents have been shown to work well even with incoherent environment models.

Formulation of a preference vector over actions, which allowed for the multi-

target controller version, can also be used to combine multiple environment mod-

els with a common action space. This would further link EMT-based control, and

DBC itself, with robotic applications. In such applications, multiple robots have

to correlate the effects their actions have on their coordination and the actual task

CHAPTER 7. SUMMARY AND FUTURE WORK 85

performance. Task completion and coordination would be described by differ-

ent models, but are likely to have similar action spaces, making the multi-model

version of a DBC controller highly applicable.

Several EMT shortcomings are evident at this time, such as the inability to

directly handle pure sensory actions. This problem, however, can be easily reme-

died by changing the type of the environment model. The integration of Predictive

State Representations (PSRs) [93] with the DBC framework opensup a promising

perspective, both in generalising existing DBC algorithms,and in extending DBC

applicability beyond Markovian environments. A thorough theoretical analysis

of EMT is also needed to establish convergence rates and stability, and may also

reveal additional methods to amend EMT shortcomings.

It will also be important to explore the effects DBC principles may have within

domains that are not directly formulated as a control problem. For instance, in re-

peated games with dynamic opponents the concept ofteachingmay be interpreted

as a form of control [91]. Given that the game is repeated and the participants

have dynamically changing attitudes, the problem can be roughly reformulated

as a control problem over a dynamic system, making it a domainsuitable for the

application of the DBC framework.

CHAPTER 7. SUMMARY AND FUTURE WORK 86

Bibliography

[1] Giogos Apostolikas and Spyros Tzafestas. Improved Q-MDP policy for

partially observable Markov decision processes in large domains: Embed-

ding exploration dynamics.Intelligent Automation and Soft Computing,

10(3):209–220, 2004.

[2] Ronald C. Arkin.Behavior-Based Robotics. MIT Press, 1998.

[3] Robert Axelrod.The Evolution of Cooperation. Basic Books, New York,

1984.

[4] Michael Bach. 71 optical illusions and visual phenomena.WWW Page

http://www.michaelbach.de/ot/, 2007.

[5] J. Bates. Virtual reality, art, and entertainment.Presence: The Journal of

Teleoprators and Virtual Environments, 1(1):133–138, 1992.

[6] Richard Ernest Bellman.Dynamic Programming. Princeton University

Press, 1957.

[7] Ulrich Berger. Brown’s original fictitious play. InEvolutionary Game

Dynamics Workshop, Banff, Canada, June 10-15 2006.

87

BIBLIOGRAPHY 88

[8] Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilber-

stein. The complexity of decentralized control of Markov decision pro-

cesses.Mathematics of Operations Research, 27(4):819–840, 2002.

[9] Dimitri P. Bertsekas.Dynamic programming : deterministic and stochastic

models. Prentice-Hall, 1987.

[10] Sooraj Bhat, David L. Roberts, Mark J. Nelson, Charles L. Isbell, and

Michael Mateas. A globally optimal algorithm for ttd-mdps.In Proceed-

ings of the 6th International Conference on Autonomous Agents and Multi-

Agent Systems (AAMAS), pages 1196–1203, 2007.

[11] Jeff A. Bilmes. A gentle tutorial of the EM algorithm and its application

to parameter estimation for Gaussian mixture and Hidden Markov Models.

Technical Report TR-97-021, Department of Electrical Engeineering and

Computer Science, University of California at Berkeley, 1998.

[12] Vincent D. Blondel and John N. Tsitsiklis. A survey of computational

complexity results in systems and control.Automatica, 36(9):1249–1274,

September 2000.

[13] Jim Blythe. Planning under uncertainty in dynamic domains. PhD thesis,

Carnegie Mellon University, Computer Science Department, 1998.

[14] Jim Blythe. Decision-theoretic planning.AI Magazine, 20(2):37–54, 1999.

[15] C. Boutilier and R. Dearden. Using abstractions for decision-theoretic plan-

ning with time constraints. InProceedings of the 12th AAAI, pages 1016–

1022, 1994.

BIBLIOGRAPHY 89

[16] Craig Boutilier, Thomas Dean, and Steve Hanks. Decision-theoretic plan-

ning: structural assumptions and computational leverage.Journal of Artifi-

cial Intelligence Research, 11:1–94, 1999.

[17] G. W. Brown. Iterative solutions of games by fictitious play. In T. C.

Koopmans, editor,Activity Analysis of Production and Allocation. Wiley,

1951.

[18] D. Burago, M. de Rougemont, and A. Slissenko. On the complexity of par-

tially observable Markov decision processes.Theoretical Computer Sci-

ence, 157(2):161–183, 1996.

[19] Andrew S. Cantino, David L. Roberts, and Charles L. Isbell.Autonomous

nondeterministic tour guides: Improving quality of experience with TTD-

MDPs. InProceedings of the 6th International Conference on Autonomous

Agents and Multi-Agent Systems (AAMAS), pages 91–93, 2007.

[20] A. R. Cassandra, L. P. Kaelbling, and M. L. Littman. Actingoptimally

in partially observable stochastic domains. InProceedings of the 12th

National Conference on Artificial Intelligence (AAAI), pages 1023–1028,

1994.

[21] Chi-Tsong Chen.Linear System Theory and Design. Oxford University

Press, 1999.

[22] T. M. Cover and J. A. Thomas.Elements of information theory. Wiley,

1991.

BIBLIOGRAPHY 90

[23] Thomas L. Dean and Michael P. Wellman.Planning and Control. Morgan

Kaufmann, 1991.

[24] Marie E. desJardins, Edmund H. Durfee, Charles L. Ortiz,and Michael J.

Wolverton. A survey of research in distributed, continual planning. AI

Magazine, 4:13–22, 1999.

[25] Prashant Doshi, Yifeng Zeng, and Qiongyu Chen. Graphical models for

online solutions to interactive pomdps. InProceedings of the Interna-

tional Joint Conference on Autonomous Agents and MultiAgentSystems

(AAMAS), pages 809–816, 2007.

[26] Eyal Even-Dar, Sham M. Kakade, and Yishay Mansour. Planning in

POMDPs using multiplicity automata. InProceeings of 20th Conference

on Uncertainty in Artificial Intelligence (UAI), pages 185–192, 2005.

[27] Ariel Felner, Alex Pomeransky, and Jeffrey S. Rosenschein. Searching for

an alternative plan. InProceedings of the 2nd International Joint Con-

ference on Autonomous Agents and Multiagent Systems (AAMAS), pages

33–40, Melbourne, Australia, July 2003.

[28] Zhengzhu Feng and Shlomo Zilberstein. Region-based incremental pruning

for POMDPs. InProceedings of the 20th Conference on Uncertainty in

Artificial Intelligence (UAI), pages 146–153, 2004.

[29] R. E. Fikes and N. J. Nilsson. Strips: a new approach to theapplication

of theorem proving to problem solving.Artificial Intelligence, 2:189–208,

1971.

BIBLIOGRAPHY 91

[30] P. E. Friedland and Y. Iwasaki. The concept and implementation of skeletal

plans.Journal of Automated Reasoning, 1(2):161–208, 1985.

[31] Brian Gerkey, Richard T. Vaughan, and Andrew Howard. The player/stage

project: Tools for multi-robot and distributed sensor systems. InProceed-

ings of the 11th International Conference on Advanced Robotics (ICAR-

03), pages 317–323, 2003.

[32] Piotr Gmytrasiewicz and Prashant Doshi. A framework for sequential plan-

ning in mutliagent settings.Journal of Artificial Intelligence Research

(JAIR), 24:49–79, 2005.

[33] Claudia V. Goldman and Shlomo Zilberstein. Decentralized control of co-

operative systems: Categorization and complexity analysis. Journal of Ar-

tificial Intelligence Research (JAIR), 22:143–174, 2004.

[34] Judy Goldsmith and Martin Mundhenk. Complexity issues in Markov de-

cision processes. InProceedings of IEEE Conference on Computational

Complexity, 1998.

[35] Amy Greenwald and Keith Hall. Correlated-Q learning. InProceedings

of the 20th International Conference on Machine Learning (ICML), pages

242–249, 2003.

[36] Kaijen Hsiao, Leslie Pack Kaelbling, and Tomas Lozano-Perez. Grasping

POMDPs. InProceedings of the IEEE Conference on Robotics and Au-

tomation, 2007.

BIBLIOGRAPHY 92

[37] Junling Hu and Michael P. Wellman. Multiagent reinforcement learning:

Theoretical framework and an algorithm. In J. Shavlik, editor, Proceedings

of the 15th International Conference on Machine Learning (ICML), pages

242–250. Morgan Kaufmann, 1998.

[38] Junling Hu and Michael P. Wellman. Nash Q-learning for general-sum

stochastic games.Journal of Machine Learning Research, 4:1039–1069,

2003.

[39] Simon Julier and Jeffrey K. Uhlmann. A general method for approximating

nonlinear transformations of probability distributions.Technical report,

Robotics Research Group, Department of Engineering Science,University

of Oxford, 1996.

[40] Michael Kearns, Yishay Mansour, and Andrew Y. Ng. Approximate plan-

ning in large POMDPs via reusable trajectories. InAdvances in Neural

Information Processing Systems (NIPS-12), pages 1001–1007, 2000.

[41] Michael Kearns and Satinder Singh. Finite-sampling convergence rates

for Q-learning and indirect algorithms. InNeural Information Processing

Systems (NIPS) 12. MIT Press, 1999.

[42] Sven Koenig. Optimal probabilistic and decision-theoretic planning using

Markovian decision theory. Master’s thesis, Computer Science Depart-

ment, University of California at Berkeley, 1991.

[43] Sven Koenig and Reid G. Simmons. Xavier: A robot navigation archi-

tecture based on partially observable Markov decision process models. In

BIBLIOGRAPHY 93

D. Kortenkamp, R. Bonasso, and R. Murphy, editors,Artificial Intelligence

Based Mobile Robotics: Case Studies of Successful Robot Systems, pages

91–122. MIT Press, 1998.

[44] Vijay R. Konda and John N. Tsitsiklis. Actor-Critic algorithms. SIAM

Journal on Control and Optimization, 42(4):1143–1166, 2003.

[45] S. Kullback. Probability densities with given marginals. The Annals of

Mathematical Statistics, 39(4):1236–1243, 1968.

[46] S. Kullback and M. A. Khairat. A note on minimum discrimination infor-

mation.The Annals of Mathematical Statistics, 37:279–280, 1966.

[47] Michael L. Littman. Markov games as a framework for multi-agent rein-

forcement learning. InML11: 11th international conference on machine

learning, pages 157–163, 1994.

[48] Michael L. Littman. Friend-or-foe Q-learning in general-sum games. In

Proceedings of the 18th International Conference on MachineLearning

(ICML), pages 322–328, 2001.

[49] Michael L. Littman. Value-function reinforcement learning in Markov

games.Journal of Cognitive Research, 2:55–66, 2001.

[50] Michael L. Littman, Thomas L. Dean, and Leslie Pack Kaelbling. On the

complexity of solving Markov decision problems. InProceedings of the

11th Annual Conference on Uncertainty in Artificial Intelligence (UAI-95),

pages 394–402, 1995.

BIBLIOGRAPHY 94

[51] M.L. Littman, J. Goldsmith, and M. Mundhenk. The complexity of proba-

bilistic planning.Journal of Artificial Intelligence Research, 9:1–36, 1998.

[52] Christopher Lusena, Judy Goldsmith, and Martin Mundhenk. Nonapprox-

imability results for partially observable Markov decision processes.Jour-

nal on Artificial Intelligence Research, 14, 2001.

[53] Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of

probabilistic planning and related stochastic optimization problems.Artifi-

cial Intelligence Journal, 147(1-2):5–34, July 2003. submitted for publish-

ing April 2001.

[54] Maja J. Mataric. Reward functions for accelerated learning. In Proceed-

ings 11th International Conference on Machine Learning, pages 181–189.

Morgan Kaufmann, 1994.

[55] Francisco S. Melo and Isabel Ribeiro. Transition entropy in partially ob-

servable Markov decision processes. InProceedings of the 44th IEEE Con-

ference on Decision and Control (CDC) and European Control Conference

(ECC-2005), 2005.

[56] Multiagent Sequential Decision Making (MSDM) workshop at AAMAS,

2007.

[57] Martin Mundhenk, Judy Goldsmith, Christopher Lusena, and Eric Allen-

der. Complexity of finite-horison Markov decision process problems.Jour-

nal of the ACM, 47(4):681–720, 2000.

BIBLIOGRAPHY 95

[58] Kevin P. Murphy. A survey of POMDP solution techniques.Technical

report, University of British Columbia, 2000.

[59] R. Nair, M. Tambe, M. Yokoo, D. Pynadath, and S. Marsella.Taming de-

centralized POMDPs: Towards efficient policy computation for multiagent

settings. InProceedings of the 18th International Joint Conference on Ar-

tificial Intelligence (IJCAI), pages 705–711, 2003.

[60] Ranjit Nair, Milind Tambe, and Stacy Marsella. Role allocation and real-

location in multiagent teams: Towards a practical analysis. In Proceedings

of the 2nd International Joint Conference on Autonomous Agents and Mul-

tiAgent Systems (AAMAS), pages 552–559. ACM Press, 2003.

[61] Ranjit Nair, Pradeep Varakantham, Milind Tambe, and Makoto Yokoo. Net-

worked distributed POMDPs: A synthesis of distributed constraint opti-

mization and POMDPs. InProceedings of the 20th National Conference

on Artificial Intelligence (AAAI), pages 133–139, 2005.

[62] Dana S. Nau, Stephen J. J. Smith, and Kutluhan Erol. Control strategies in

HTN planning: Theory versus practice. InAAAI/IAAI, pages 1127–1133,

1998.

[63] Radford M. Neal and Geoffrey E. Hinton. A view of the EM algorithm

that justifies incremental, sparse, and other variants. In M. I. Jordan, editor,

Learning in Graphical Models, pages 355–368. Kluwer Academic Publish-

ers, 1998.

[64] Mark J. Nelson, David L. Roberts, Jr Charles L. Isbell, andMichael Mateas.

Reinforcement learning for declarative optimization-based drama manage-

BIBLIOGRAPHY 96

ment. InProceedings of the 5th International Conference on Autonomous

Agents and Multi-Agent Systems (AAMAS), pages 775–782, 2006.

[65] Andrew Y. Ng, Daishi Harada, and Stuart Russell. Policy invariance un-

der reward transformations: theory and application to reward shaping. In

Proceedings of the 16th International Conference on MachineLearning

(ICML-99), pages 278–287, 1999.

[66] Guillermo Owen.Game theory. Academic Press, 3rd edition, 1995.

[67] Christos H. Papadimitriou and John N. Tsitsiklis. The complexity

of Markov decision processes.Mathematics of Operations Research,

12(3):441–450, August 1987.

[68] M. A. Peot and D. E. Smith. Conditional nonlinear planning. In Proceed-

ings of the 1st International Conference on Artificial Intelligence Planning

Sysytems, pages 189–197, 1992.

[69] Joelle Pineau, Geoff Gordon, and Sebastian Thrun. Point-based value in-

teration: An anytime algorithm for POMDPs. InProceedings of the 18th

International Joint Conference on Artificial Intelligence (IJCAI), pages

1025–1030, 2003.

[70] Joelle Pineau, Geoff Gordon, and Sebastian Thrun. Point-based value itera-

tion: An anytime algorithm for pomdps. InInternational Joint Conference

on Artificial Intelligence (IJCAI), pages 1025–1032, August 2003.

[71] William T. Powers. Behavior: The control of perception. Aldine de

Gruyter, Chicago, 1973.

BIBLIOGRAPHY 97

[72] Martin L. Puterman.Markov Decision Processes. Wiley Series in Probabil-

ity and Mathematical Statistics: Applied Probability and Statistics Section.

Wiley-Interscience Publication, New York, 1994.

[73] Zinovi Rabinovich, Claudia V. Goldman, and Jeffrey S. Rosenschein. Non-

approximability of centralized control. Technical Report 2002-29, Leibniz

Center for Computer Science, Hebrew University, Jerusalem, Israel, 2002.

[74] Zinovi Rabinovich, Claudia V. Goldman, and Jeffrey S. Rosenschein. The

complexity of multiagent systems: The price of silence. InProceedings

of the Second International Joint Conference on Autonomous Agents and

Multiagent Systems, pages 1102–1103, Melbourne, Australia, July 2003.

[75] Zinovi Rabinovich and Jeffrey S. Rosenschein. Extended Markov Track-

ing with an application to control. InThe Workshop on Agent Tracking:

Modeling Other Agents from Observations, at the Third International Joint

Conference on Autonomous Agents and Multiagent Systems, pages 95–100,

New York, July 2004.

[76] Zinovi Rabinovich and Jeffrey S. Rosenschein. Dynamics based control:

An introduction. InThe Third European Workshop on Multi-Agent Systems,

EUMAS’05, pages 323–331, Brussels, Belgium, December 2005.

[77] Zinovi Rabinovich and Jeffrey S. Rosenschein. Multiagent coordination by

Extended Markov Tracking. InThe Fourth International Joint Conference

on Autonomous Agents and Multiagent Systems, pages 431–438, Utrecht,

The Netherlands, July 2005.

BIBLIOGRAPHY 98

[78] Zinovi Rabinovich and Jeffrey S. Rosenschein. Robot-control based on

Extended Markov Tracking: Initial experiments. InThe Eighth Biennial

Israeli Symposium on the Foundations of Artificial Intelligence, Haifa, Is-

rael, June 2005.

[79] Zinovi Rabinovich and Jeffrey S. Rosenschein. Dynamics based control:

Structure. InWorkshop on Multi-Agent Sequential Decision Making in Un-

certain Domains (MSDM 2006), pages 148–161, Hakodate, Japan, May

2006.

[80] Zinovi Rabinovich and Jeffrey S. Rosenschein. On the response of EMT-

based control to interacting targets and models. InThe Fifth International

Joint Conference on Autonomous Agents and Multiagent Systems, pages

465–470, Hakodate, Japan, May 2006.

[81] Zinovi Rabinovich, Jeffrey S. Rosenschein, and Gal A. Kaminka. Dynam-

ics based control with an application to area-sweeping problems. InThe

Sixth International Joint Conference on Autonomous Agents and Multia-

gent Systems (AAMAS 2007), Honolulu, Hawaii, May 2007. To appear.

[82] David L. Roberts, Mark J. Nelson, Jr Charles L. Isbell, Michael Mateas,

and Michael L. Littman. Targeting specific distributions oftrajectories in

MDPs. InProceedings of the National Conference on Artificial Intelligence

(AAAI), pages 1213–1218, 2006.

[83] Jeffrey S. Rosenschein and Gilad Zlotkin.Rules of Encounter: Designing

Conventions for Automated Negotiation Among Computers. MIT Press,

Cambridge, Massachusetts, 1994.

BIBLIOGRAPHY 99

[84] Maayan Roth, Reid Simmons, and Manuela Veloso. Decnetralized commu-

nication strategies for coordinated multi-agent policies. In Lynne E. Parker,

Frank E. Schneider, and Alan C. Shultz, editors,Multi-Robot Systems: from

Swarms to Inelligent Automata, volume III, pages 93–106. Springer, 2005.

[85] Maayan Roth, Reid Simmons, and Manuela Veloso. Exploiting factored

representations for decentralized execution in multi-agent teams. InPro-

ceedings of the International Joint Conference on Autonomous Agents and

MultiAgent Systems (AAMAS), pages 457–463, 2007.

[86] Nicholas Roy and Sebastian Thrun. Coastal navigation with a mobile robot.

In Proceedings of Conference on Advances in Neural Information Process-

ing Systems (NIPS), 1999.

[87] Stuart J. Russell and Peter Norvig.Artificial Intelligence: A modern ap-

proach. Prentice Hall, 1995.

[88] Thomas Schelling.The Strategy of Conflict. Harvard University Press,

Cambridge, MA, 1960.

[89] Sandip Sen, Mahendra Sekaran, and John Hale. Learning to coordinate

without sharing information. InProceedings of 12th national conference

on AI (AAAI-94), pages 426–431, 1994.

[90] Jiaying Shen, Raphen Becker, and Victor Lesser. Agent interaction in

distributed mdps and its implications on complexity. InProceedings of

the Fifth International Joint Conference on Autonomous Agents and Multi-

Agent Systems (AAMAS), pages 529–536, 2006.

BIBLIOGRAPHY 100

[91] Yoav Shoham, Rob Powers, and Trond Grenager. If multi-agent learning is

the answer, what is the question?Artificial Intelligence, 171(7):365–377,

2007. Special issue on Foundations of Multi-Agent Learning.

[92] Reid Simmons and Sven Koenig. Probabilistic robot navigation in partially

observable environments. InProceedings of the International Joint Con-

ference on Artificial Intelligence (IJCAI), pages 1080–1087, 1995.

[93] Satinder Singh, Michael R. James, and Matthew R. Rudary. Predictive

state representations: A new theory for modeling dynamicalsystems. In

Proceedings of the Twentieth Conference on Uncertainty in Artificial Intel-

ligence (UAI), pages 512–519, 2004.

[94] Trey Smith and Reid Simmons. Point-based POMDP algorithms: Improved

analysis and implementation. InProceedings of the 21st Conference on

Uncertainty in Artificial Intelligence (UAI), pages 542–555, 2005.

[95] Robert F. Stengel.Optimal Control and Estimation. Dover Publications,

1994.

[96] Daniel Stronger and Peter Stone. Simultaneous calibration of action and

sensor models in a mobile robot. InProceedings of the International Con-

ference on Robotics and Automation (ICRA), pages 4563–4568, 2005.

[97] Richard S. Sutton and Andrew G. Barto.Reinforcement Learning: An in-

troduction. The MIT Press, 1998.

BIBLIOGRAPHY 101

[98] Ming Tan. Multi-agent reinforcement learning: independent vs. coopera-

tive agents. InProceedings of International Conference on Machine Learn-

ing (ML10), pages 330–337, 1993.

[99] Georgios Theocharous and Leslie Pack Kaelbling. Approximate planning

in POMDPs with macro-actions. In Sebastian Thrun, LawrenceSaul, and

Bernhard Scḧolkopf, editors,Advances in Neural Information Processing

Systems (NIPS-16), Cambridge, MA, 2004. MIT Press.

[100] Manuela Veloso, Jaime Carbonell, Alicia Prez, Daniel Borrajo, Eugene

Fink, and Jim Blythe. Integrating planning and learning: ThePRODIGY

architecture. Journal of Experimental and Theoretical Artificial Intelli-

gence, 7(1), 1995.

[101] Eric A. Wan and Rudolph van der Merwe. The unscented kalman filter for

nonlinear estimation. InIEEE Symposium on Adaptive Systems for Signal

Processing, Communications, and Control, pages 153–158, 2000.

[102] C. J. Watkins.Models of Delayed Reinforcement Learning. PhD thesis,

Psychology Department, Cambridge University, 1989.

[103] C. J. Watkins and P. Dayan. Q-learning.Machine Learning, 8(3):279–292,

1992.

[104] P. Weyhrauch.Guiding Interactive Drama. PhD thesis, School of Computer

Science, Carnegie-Mellon University, 1997.

[105] David Wingate and Satinder Singh. Kernel predictive linear Gaussian mod-

els for nonlinear stochastic dynamical systems. InProceedings of the In-

BIBLIOGRAPHY 102

ternational Conference on Machine Learning (ICML), pages 1017 – 1024,

2006.

[106] David Wingate and Satinder Singh. Mixtures of predictive linear Gaus-

sian models for nonlinear stochastic dynamical systems. InProceedings of

the National Conference on Artificial Intelligence (AAAI), pages 524–529,

2006.

[107] David Wingate and Satinder Singh. On discovery and learning of mod-

els with predictive representations of state for agents with continuous ac-

tions and observations. InProceedings of the International Conference on

Autonomous Agents and Multiagent Systems (AAMAS), pages 1128–1135,

2007.

[108] Britton Wolfe and Satinder Singh. Predictive state representations with

options. InProceedings of the 23rd International Conference on Machine

Learning (ICML), pages 1025–1032, 2006.

[109] Michael Wooldridge.An Introduction to Multiagent Systems. John Wiley

& Sons, February 2002.

[110] Jianzhong Wu and Robert Axelrod. How to cope with noise in the iterated

prisoner’s dilemma.Journal of Conflict Resolution, 39(1):183–189, 1995.

[111] James R. Van Zandt. A more robust unscented transform. Technical Report

MS-M210, MITRE Corporation, 202 Burlington Road, Bedford, USA, July

2001.

	Title Page
	Abstract
	Table of Contents
	List of Figures
	Introduction
	Background and Related Work
	Control Theory
	Partially Observable Markov Decision Problems (POMDPs)
	Targeted Trajectory Distribution Markov Decision Processes
	Fictitious Play
	Multi-agent learning
	Multi-agent POMDPs

	The Dynamics Based Control (DBC) Framework
	DBC Components
	A Note on Versatility of System Dynamics

	DBC Architecture
	Control and Planning Perspectives
	The Model Following Perspective
	The Perceptual Control Perspective
	The Planning Perspective

	DBC for Markovian Environments
	The Extended Markov Tracking (EMT) Solution
	Intuition and Mathematics of EMT
	The EMT-based Agent Level Control Algorithm
	Validation Experiment: Aircraft Landing

	The Multi-Agent EMT Algorithm
	Experiment: Springed Bar Balance

	Multi-Target EMT Algorithm
	Experiment: Multi-Target Bar Problem
	Experiment: EMT Playing Tag

	Empirical Stability of EMT-based Control
	EMT Resistance to Model Incoherence
	EMT-Based Action Model Calibration
	Calibrated Target Following

	Technical Limitations of EMT-based control
	Summary and Future Work
	Discussion and Summary
	Conclusions and Future Work

	Bibliography

